| | |
| | | typedef struct{ |
| | | int inputs; |
| | | int outputs; |
| | | double *weights; |
| | | double *biases; |
| | | double *weight_updates; |
| | | double *bias_updates; |
| | | double *output; |
| | | float *weights; |
| | | float *biases; |
| | | |
| | | double (* activation)(); |
| | | double (* gradient)(); |
| | | float *weight_updates; |
| | | float *bias_updates; |
| | | |
| | | float *weight_adapt; |
| | | float *bias_adapt; |
| | | |
| | | float *weight_momentum; |
| | | float *bias_momentum; |
| | | |
| | | float *output; |
| | | float *delta; |
| | | |
| | | ACTIVATION activation; |
| | | |
| | | } connected_layer; |
| | | |
| | | connected_layer make_connected_layer(int inputs, int outputs, ACTIVATOR_TYPE activator); |
| | | connected_layer *make_connected_layer(int inputs, int outputs, ACTIVATION activation); |
| | | |
| | | void run_connected_layer(double *input, connected_layer layer); |
| | | void learn_connected_layer(double *input, connected_layer layer); |
| | | void update_connected_layer(connected_layer layer, double step); |
| | | void forward_connected_layer(connected_layer layer, float *input); |
| | | void backward_connected_layer(connected_layer layer, float *input, float *delta); |
| | | void learn_connected_layer(connected_layer layer, float *input); |
| | | void update_connected_layer(connected_layer layer, float step, float momentum, float decay); |
| | | |
| | | void backpropagate_connected_layer(double *input, connected_layer layer); |
| | | void calculate_update_connected_layer(double *input, connected_layer layer); |
| | | |
| | | #endif |
| | | |