| | |
| | | clock_t time; |
| | | float avg_acc = 0; |
| | | float avg_topk = 0; |
| | | int splits = 50; |
| | | int splits = m/1000; |
| | | int num = (i+1)*m/splits - i*m/splits; |
| | | |
| | | data val, buffer; |
| | |
| | | int i = 0; |
| | | char **names = get_labels(name_list); |
| | | clock_t time; |
| | | int indexes[10]; |
| | | int *indexes = calloc(top, sizeof(int)); |
| | | char buff[256]; |
| | | char *input = buff; |
| | | while(1){ |
| | |
| | | if(!input) return; |
| | | strtok(input, "\n"); |
| | | } |
| | | image im = load_image_color(input, 256, 256); |
| | | image im = load_image_color(input, net.w, net.h); |
| | | float *X = im.data; |
| | | time=clock(); |
| | | float *predictions = network_predict(net, X); |
| | |
| | | } |
| | | } |
| | | |
| | | void test_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int target_layer) |
| | | void test_classifier(char *datacfg, char *cfgfile, char *weightfile, int target_layer) |
| | | { |
| | | int curr = 0; |
| | | network net = parse_network_cfg(filename); |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | |
| | | list *options = read_data_cfg(datacfg); |
| | | |
| | | char *test_list = option_find_str(options, "test", "data/test.list"); |
| | | char *label_list = option_find_str(options, "labels", "data/labels.list"); |
| | | int classes = option_find_int(options, "classes", 2); |
| | | |
| | | char **labels = get_labels(label_list); |
| | | list *plist = get_paths(test_list); |
| | | |
| | | char **paths = (char **)list_to_array(plist); |
| | |
| | | args.classes = classes; |
| | | args.n = net.batch; |
| | | args.m = 0; |
| | | args.labels = labels; |
| | | args.labels = 0; |
| | | args.d = &buffer; |
| | | args.type = CLASSIFICATION_DATA; |
| | | |
| | |
| | | time=clock(); |
| | | matrix pred = network_predict_data(net, val); |
| | | |
| | | int i; |
| | | int i, j; |
| | | if (target_layer >= 0){ |
| | | //layer l = net.layers[target_layer]; |
| | | } |
| | | |
| | | for(i = 0; i < val.X.rows; ++i){ |
| | | |
| | | for(i = 0; i < pred.rows; ++i){ |
| | | printf("%s", paths[curr-net.batch+i]); |
| | | for(j = 0; j < pred.cols; ++j){ |
| | | printf("\t%g", pred.vals[i][j]); |
| | | } |
| | | printf("\n"); |
| | | } |
| | | |
| | | free_matrix(pred); |
| | |
| | | int layer = layer_s ? atoi(layer_s) : -1; |
| | | if(0==strcmp(argv[2], "predict")) predict_classifier(data, cfg, weights, filename); |
| | | else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights); |
| | | else if(0==strcmp(argv[2], "test")) test_classifier(data, cfg, weights,filename, layer); |
| | | else if(0==strcmp(argv[2], "test")) test_classifier(data, cfg, weights, layer); |
| | | else if(0==strcmp(argv[2], "valid")) validate_classifier(data, cfg, weights); |
| | | } |
| | | |