| | |
| | | |
| | | #ifdef OPENCV |
| | | #include "opencv2/highgui/highgui_c.h" |
| | | #include "opencv2/core/core_c.h" |
| | | #include "opencv2/core/version.hpp" |
| | | |
| | | #ifndef CV_VERSION_EPOCH |
| | | #include "opencv2/videoio/videoio_c.h" |
| | | #define OPENCV_VERSION CVAUX_STR(CV_VERSION_MAJOR)""CVAUX_STR(CV_VERSION_MINOR)""CVAUX_STR(CV_VERSION_REVISION) |
| | | #pragma comment(lib, "opencv_world" OPENCV_VERSION ".lib") |
| | | #else |
| | | #define OPENCV_VERSION CVAUX_STR(CV_VERSION_EPOCH)""CVAUX_STR(CV_VERSION_MAJOR)""CVAUX_STR(CV_VERSION_MINOR) |
| | | #pragma comment(lib, "opencv_core" OPENCV_VERSION ".lib") |
| | | #pragma comment(lib, "opencv_imgproc" OPENCV_VERSION ".lib") |
| | | #pragma comment(lib, "opencv_highgui" OPENCV_VERSION ".lib") |
| | | #endif |
| | | |
| | | #endif |
| | | |
| | | static int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90}; |
| | | |
| | | void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear) |
| | |
| | | args.num_boxes = l.max_boxes; |
| | | args.d = &buffer; |
| | | args.type = DETECTION_DATA; |
| | | args.threads = 4; |
| | | args.threads = 8; |
| | | |
| | | args.angle = net.angle; |
| | | args.exposure = net.exposure; |
| | |
| | | int count = 0; |
| | | //while(i*imgs < N*120){ |
| | | while(get_current_batch(net) < net.max_batches){ |
| | | if(l.random && count++%10 == 0){ |
| | | if(l.random && count++%10 == 0){ |
| | | printf("Resizing\n"); |
| | | int dim = (rand() % 10 + 10) * 32; |
| | | if (get_current_batch(net)+100 > net.max_batches) dim = 544; |
| | | //int dim = (rand() % 4 + 16) * 32; |
| | | printf("%d\n", dim); |
| | | args.w = dim; |
| | |
| | | |
| | | i = get_current_batch(net); |
| | | printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs); |
| | | if(i%1000==0 || (i < 1000 && i%100 == 0)){ |
| | | if (i % 1000 == 0 || (i < 1000 && i % 100 == 0)) { |
| | | #ifdef GPU |
| | | if(ngpus != 1) sync_nets(nets, ngpus, 0); |
| | | if (ngpus != 1) sync_nets(nets, ngpus, 0); |
| | | #endif |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); |
| | | save_weights(net, buff); |
| | | } |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); |
| | | save_weights(net, buff); |
| | | } |
| | | free_data(train); |
| | | } |
| | | #ifdef GPU |
| | |
| | | } |
| | | } |
| | | |
| | | void print_imagenet_detections(FILE *fp, int id, box *boxes, float **probs, int total, int classes, int w, int h, int *map) |
| | | void print_imagenet_detections(FILE *fp, int id, box *boxes, float **probs, int total, int classes, int w, int h) |
| | | { |
| | | int i, j; |
| | | for(i = 0; i < total; ++i){ |
| | |
| | | |
| | | for(j = 0; j < classes; ++j){ |
| | | int class = j; |
| | | if (map) class = map[j]; |
| | | if (probs[i][class]) fprintf(fp, "%d %d %f %f %f %f %f\n", id, j+1, probs[i][class], |
| | | xmin, ymin, xmax, ymax); |
| | | } |
| | |
| | | |
| | | void validate_detector(char *datacfg, char *cfgfile, char *weightfile) |
| | | { |
| | | int j; |
| | | list *options = read_data_cfg(datacfg); |
| | | char *valid_images = option_find_str(options, "valid", "data/train.list"); |
| | | char *name_list = option_find_str(options, "names", "data/names.list"); |
| | |
| | | int *map = 0; |
| | | if (mapf) map = read_map(mapf); |
| | | |
| | | |
| | | char buff[1024]; |
| | | char *type = option_find_str(options, "eval", "voc"); |
| | | FILE *fp = 0; |
| | | int coco = 0; |
| | | int imagenet = 0; |
| | | if(0==strcmp(type, "coco")){ |
| | | snprintf(buff, 1024, "%s/coco_results.json", prefix); |
| | | fp = fopen(buff, "w"); |
| | | fprintf(fp, "[\n"); |
| | | coco = 1; |
| | | } else if(0==strcmp(type, "imagenet")){ |
| | | snprintf(buff, 1024, "%s/imagenet-detection.txt", prefix); |
| | | fp = fopen(buff, "w"); |
| | | imagenet = 1; |
| | | } |
| | | |
| | | network net = parse_network_cfg(cfgfile); |
| | | network net = parse_network_cfg_custom(cfgfile, 1); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | |
| | | layer l = net.layers[net.n-1]; |
| | | int classes = l.classes; |
| | | |
| | | int j; |
| | | FILE **fps = calloc(classes, sizeof(FILE *)); |
| | | for(j = 0; j < classes; ++j){ |
| | | snprintf(buff, 1024, "%s/%s%s.txt", prefix, base, names[j]); |
| | | fps[j] = fopen(buff, "w"); |
| | | char buff[1024]; |
| | | char *type = option_find_str(options, "eval", "voc"); |
| | | FILE *fp = 0; |
| | | FILE **fps = 0; |
| | | int coco = 0; |
| | | int imagenet = 0; |
| | | if(0==strcmp(type, "coco")){ |
| | | snprintf(buff, 1024, "%s/coco_results.json", prefix); |
| | | fp = fopen(buff, "w"); |
| | | fprintf(fp, "[\n"); |
| | | coco = 1; |
| | | } else if(0==strcmp(type, "imagenet")){ |
| | | snprintf(buff, 1024, "%s/imagenet-detection.txt", prefix); |
| | | fp = fopen(buff, "w"); |
| | | imagenet = 1; |
| | | classes = 200; |
| | | } else { |
| | | fps = calloc(classes, sizeof(FILE *)); |
| | | for(j = 0; j < classes; ++j){ |
| | | snprintf(buff, 1024, "%s/%s%s.txt", prefix, base, names[j]); |
| | | fps[j] = fopen(buff, "w"); |
| | | } |
| | | } |
| | | |
| | | |
| | | box *boxes = calloc(l.w*l.h*l.n, sizeof(box)); |
| | | float **probs = calloc(l.w*l.h*l.n, sizeof(float *)); |
| | | for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(classes, sizeof(float *)); |
| | |
| | | network_predict(net, X); |
| | | int w = val[t].w; |
| | | int h = val[t].h; |
| | | get_region_boxes(l, w, h, thresh, probs, boxes, 0); |
| | | get_region_boxes(l, w, h, thresh, probs, boxes, 0, map); |
| | | if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, classes, nms); |
| | | if (coco){ |
| | | print_cocos(fp, path, boxes, probs, l.w*l.h*l.n, classes, w, h); |
| | | } else if (imagenet){ |
| | | print_imagenet_detections(fp, i+t-nthreads+1 + 9741, boxes, probs, l.w*l.h*l.n, 200, w, h, map); |
| | | print_imagenet_detections(fp, i+t-nthreads+1, boxes, probs, l.w*l.h*l.n, classes, w, h); |
| | | } else { |
| | | print_detector_detections(fps, id, boxes, probs, l.w*l.h*l.n, classes, w, h); |
| | | } |
| | |
| | | } |
| | | } |
| | | for(j = 0; j < classes; ++j){ |
| | | fclose(fps[j]); |
| | | if(fps) fclose(fps[j]); |
| | | } |
| | | if(coco){ |
| | | fseek(fp, -2, SEEK_CUR); |
| | |
| | | fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start)); |
| | | } |
| | | |
| | | void validate_detector_recall(char *cfgfile, char *weightfile) |
| | | void validate_detector_recall(char *datacfg, char *cfgfile, char *weightfile) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | | network net = parse_network_cfg_custom(cfgfile, 1); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | |
| | | fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | srand(time(0)); |
| | | |
| | | list *plist = get_paths("data/voc.2007.test"); |
| | | list *options = read_data_cfg(datacfg); |
| | | char *valid_images = option_find_str(options, "valid", "data/train.txt"); |
| | | list *plist = get_paths(valid_images); |
| | | char **paths = (char **)list_to_array(plist); |
| | | |
| | | layer l = net.layers[net.n-1]; |
| | |
| | | int m = plist->size; |
| | | int i=0; |
| | | |
| | | float thresh = .001; |
| | | float thresh = .001;// .001; // .2; |
| | | float iou_thresh = .5; |
| | | float nms = .4; |
| | | |
| | |
| | | image sized = resize_image(orig, net.w, net.h); |
| | | char *id = basecfg(path); |
| | | network_predict(net, sized.data); |
| | | get_region_boxes(l, 1, 1, thresh, probs, boxes, 1); |
| | | get_region_boxes(l, 1, 1, thresh, probs, boxes, 1, 0); |
| | | if (nms) do_nms(boxes, probs, l.w*l.h*l.n, 1, nms); |
| | | |
| | | char labelpath[4096]; |
| | |
| | | find_replace(labelpath, "JPEGImages", "labels", labelpath); |
| | | find_replace(labelpath, ".jpg", ".txt", labelpath); |
| | | find_replace(labelpath, ".JPEG", ".txt", labelpath); |
| | | find_replace(labelpath, ".png", ".txt", labelpath); |
| | | |
| | | int num_labels = 0; |
| | | box_label *truth = read_boxes(labelpath, &num_labels); |
| | |
| | | ++proposals; |
| | | } |
| | | } |
| | | for (j = 0; j < num_labels; ++j) { |
| | | ++total; |
| | | box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h}; |
| | | float best_iou = 0; |
| | | for(k = 0; k < l.w*l.h*l.n; ++k){ |
| | | float iou = box_iou(boxes[k], t); |
| | | if(probs[k][0] > thresh && iou > best_iou){ |
| | | best_iou = iou; |
| | | } |
| | | } |
| | | for (j = 0; j < num_labels; ++j) { |
| | | ++total; |
| | | box t = { truth[j].x, truth[j].y, truth[j].w, truth[j].h }; |
| | | float best_iou = 0; |
| | | for (k = 0; k < l.w*l.h*l.n; ++k) { |
| | | float iou = box_iou(boxes[k], t); |
| | | if (probs[k][0] > thresh && iou > best_iou) { |
| | | best_iou = iou; |
| | | } |
| | | } |
| | | avg_iou += best_iou; |
| | | if(best_iou > iou_thresh){ |
| | | ++correct; |
| | |
| | | char **names = get_labels(name_list); |
| | | |
| | | image **alphabet = load_alphabet(); |
| | | network net = parse_network_cfg(cfgfile); |
| | | network net = parse_network_cfg_custom(cfgfile, 1); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | |
| | | while(1){ |
| | | if(filename){ |
| | | strncpy(input, filename, 256); |
| | | if (input[strlen(input) - 1] == 0x0d) input[strlen(input) - 1] = 0; |
| | | } else { |
| | | printf("Enter Image Path: "); |
| | | fflush(stdout); |
| | |
| | | time=clock(); |
| | | network_predict(net, X); |
| | | printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); |
| | | get_region_boxes(l, 1, 1, thresh, probs, boxes, 0); |
| | | get_region_boxes(l, 1, 1, thresh, probs, boxes, 0, 0); |
| | | if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, l.classes, nms); |
| | | draw_detections(im, l.w*l.h*l.n, thresh, boxes, probs, names, alphabet, l.classes); |
| | | save_image(im, "predictions"); |
| | |
| | | |
| | | void run_detector(int argc, char **argv) |
| | | { |
| | | char *out_filename = find_char_arg(argc, argv, "-out_filename", 0); |
| | | char *prefix = find_char_arg(argc, argv, "-prefix", 0); |
| | | float thresh = find_float_arg(argc, argv, "-thresh", .25); |
| | | float thresh = find_float_arg(argc, argv, "-thresh", .24); |
| | | int cam_index = find_int_arg(argc, argv, "-c", 0); |
| | | int frame_skip = find_int_arg(argc, argv, "-s", 0); |
| | | if(argc < 4){ |
| | |
| | | char *datacfg = argv[3]; |
| | | char *cfg = argv[4]; |
| | | char *weights = (argc > 5) ? argv[5] : 0; |
| | | if(weights) |
| | | if (weights[strlen(weights) - 1] == 0x0d) weights[strlen(weights) - 1] = 0; |
| | | char *filename = (argc > 6) ? argv[6]: 0; |
| | | if(0==strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh); |
| | | else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear); |
| | | else if(0==strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights); |
| | | else if(0==strcmp(argv[2], "recall")) validate_detector_recall(cfg, weights); |
| | | else if(0==strcmp(argv[2], "recall")) validate_detector_recall(datacfg, cfg, weights); |
| | | else if(0==strcmp(argv[2], "demo")) { |
| | | list *options = read_data_cfg(datacfg); |
| | | int classes = option_find_int(options, "classes", 20); |
| | | char *name_list = option_find_str(options, "names", "data/names.list"); |
| | | char **names = get_labels(name_list); |
| | | demo(cfg, weights, thresh, cam_index, filename, names, classes, frame_skip, prefix); |
| | | if(filename) |
| | | if (filename[strlen(filename) - 1] == 0x0d) filename[strlen(filename) - 1] = 0; |
| | | demo(cfg, weights, thresh, cam_index, filename, names, classes, frame_skip, prefix, out_filename); |
| | | } |
| | | } |