| | |
| | | void run_network(image input, network net) |
| | | { |
| | | int i; |
| | | double *input_d = 0; |
| | | double *input_d = input.data; |
| | | for(i = 0; i < net.n; ++i){ |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | |
| | | } |
| | | } |
| | | |
| | | void update_network(network net, double step) |
| | | { |
| | | int i; |
| | | for(i = 0; i < net.n; ++i){ |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | update_convolutional_layer(layer, step); |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | //maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | update_connected_layer(layer, step); |
| | | } |
| | | } |
| | | } |
| | | |
| | | void learn_network(image input, network net) |
| | | { |
| | | int i; |
| | | image prev; |
| | | double *prev_p; |
| | | for(i = net.n-1; i >= 0; --i){ |
| | | if(i == 0){ |
| | | prev = input; |
| | | prev_p = prev.data; |
| | | } else if(net.types[i-1] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i-1]; |
| | | prev = layer.output; |
| | | prev_p = prev.data; |
| | | } else if(net.types[i-1] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i-1]; |
| | | prev = layer.output; |
| | | prev_p = prev.data; |
| | | } else if(net.types[i-1] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i-1]; |
| | | prev_p = layer.output; |
| | | } |
| | | |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | learn_convolutional_layer(prev, layer); |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | //maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | learn_connected_layer(prev_p, layer); |
| | | } |
| | | } |
| | | } |
| | | |
| | | double *get_network_output(network net) |
| | | { |
| | | int i = net.n-1; |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | return layer.output.data; |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | return layer.output.data; |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | return layer.output; |
| | | } |
| | | return 0; |
| | | } |
| | | image get_network_image(network net) |
| | | { |
| | | int i; |