| | |
| | | for(i = 0; i < outputs; ++i){ |
| | | //layer->biases[i] = rand_normal()*scale + scale; |
| | | layer->biases[i] = 1; |
| | | } |
| | | } |
| | | |
| | | #ifdef GPU |
| | | layer->weights_cl = cl_make_array(layer->weights, inputs*outputs); |
| | | layer->biases_cl = cl_make_array(layer->biases, outputs); |
| | | |
| | | layer->weight_updates_cl = cl_make_array(layer->weight_updates, inputs*outputs); |
| | | layer->bias_updates_cl = cl_make_array(layer->bias_updates, outputs); |
| | | |
| | | layer->output_cl = cl_make_array(layer->output, outputs*batch); |
| | | layer->delta_cl = cl_make_array(layer->delta, outputs*batch); |
| | | #endif |
| | | layer->activation = activation; |
| | | return layer; |
| | |
| | | { |
| | | int i; |
| | | gradient_array(layer.output, layer.outputs*layer.batch, layer.activation, layer.delta); |
| | | for(i = 0; i < layer.outputs*layer.batch; ++i){ |
| | | layer.bias_updates[i%layer.outputs] += layer.delta[i]; |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | axpy_cpu(layer.outputs, 1, layer.delta + i*layer.outputs, 1, layer.bias_updates, 1); |
| | | } |
| | | int m = layer.inputs; |
| | | int k = layer.batch; |
| | |
| | | if(c) gemm(0,1,m,n,k,1,a,k,b,k,0,c,n); |
| | | } |
| | | |
| | | #ifdef GPU |
| | | |
| | | void update_connected_layer_gpu(connected_layer layer) |
| | | { |
| | | axpy_ongpu(layer.outputs, layer.learning_rate, layer.bias_updates_cl, 1, layer.biases_cl, 1); |
| | | scal_ongpu(layer.outputs, layer.momentum, layer.bias_updates_cl, 1); |
| | | |
| | | scal_ongpu(layer.inputs*layer.outputs, 1.-layer.learning_rate*layer.decay, layer.weights_cl, 1); |
| | | axpy_ongpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates_cl, 1, layer.weights_cl, 1); |
| | | scal_ongpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates_cl, 1); |
| | | } |
| | | |
| | | void forward_connected_layer_gpu(connected_layer layer, cl_mem input) |
| | | { |
| | | int i; |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | cl_mem sub = cl_sub_array(layer.output_cl, i*layer.outputs, layer.outputs); |
| | | copy_ongpu(layer.outputs, layer.biases_cl, 1, sub, 1); |
| | | clReleaseMemObject(sub); |
| | | } |
| | | int m = layer.batch; |
| | | int k = layer.inputs; |
| | | int n = layer.outputs; |
| | | cl_mem a = input; |
| | | cl_mem b = layer.weights_cl; |
| | | cl_mem c = layer.output_cl; |
| | | gemm_ongpu(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | activate_array_ongpu(layer.output_cl, layer.outputs*layer.batch, layer.activation); |
| | | } |
| | | |
| | | void backward_connected_layer_gpu(connected_layer layer, cl_mem input, cl_mem delta) |
| | | { |
| | | int i; |
| | | gradient_array_ongpu(layer.output_cl, layer.outputs*layer.batch, layer.activation, layer.delta_cl); |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | cl_mem sub = cl_sub_array(layer.delta_cl, i*layer.outputs, layer.outputs); |
| | | axpy_ongpu(layer.outputs, 1, sub, 1, layer.bias_updates_cl, 1); |
| | | clReleaseMemObject(sub); |
| | | } |
| | | int m = layer.inputs; |
| | | int k = layer.batch; |
| | | int n = layer.outputs; |
| | | cl_mem a = input; |
| | | cl_mem b = layer.delta_cl; |
| | | cl_mem c = layer.weight_updates_cl; |
| | | gemm_ongpu(1,0,m,n,k,1,a,m,b,n,1,c,n); |
| | | |
| | | m = layer.batch; |
| | | k = layer.outputs; |
| | | n = layer.inputs; |
| | | |
| | | a = layer.delta_cl; |
| | | b = layer.weights_cl; |
| | | c = delta; |
| | | |
| | | if(c) gemm_ongpu(0,1,m,n,k,1,a,k,b,k,0,c,n); |
| | | } |
| | | #endif |