| | |
| | | |
| | | layer.x_gpu = cuda_make_array(layer.output, layer.batch*layer.outputs); |
| | | layer.x_norm_gpu = cuda_make_array(layer.output, layer.batch*layer.outputs); |
| | | #ifdef CUDNN |
| | | cudnnCreateTensorDescriptor(&layer.normTensorDesc); |
| | | cudnnCreateTensorDescriptor(&layer.normDstTensorDesc); |
| | | cudnnSetTensor4dDescriptor(layer.normDstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, layer.batch, layer.out_c, layer.out_h, layer.out_w); |
| | | cudnnSetTensor4dDescriptor(layer.normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, layer.out_c, 1, 1); |
| | | #endif |
| | | #endif |
| | | return layer; |
| | | } |
| | |
| | | l.out_h = l.out_w = 1; |
| | | } |
| | | if(state.train){ |
| | | mean_cpu(l.output, l.batch, l.out_c, l.out_h*l.out_w, l.mean); |
| | | variance_cpu(l.output, l.mean, l.batch, l.out_c, l.out_h*l.out_w, l.variance); |
| | | mean_cpu(l.output, l.batch, l.out_c, l.out_h*l.out_w, l.mean); |
| | | variance_cpu(l.output, l.mean, l.batch, l.out_c, l.out_h*l.out_w, l.variance); |
| | | |
| | | scal_cpu(l.out_c, .9, l.rolling_mean, 1); |
| | | axpy_cpu(l.out_c, .1, l.mean, 1, l.rolling_mean, 1); |
| | | scal_cpu(l.out_c, .9, l.rolling_variance, 1); |
| | | axpy_cpu(l.out_c, .1, l.variance, 1, l.rolling_variance, 1); |
| | | |
| | | copy_cpu(l.outputs*l.batch, l.output, 1, l.x, 1); |
| | | normalize_cpu(l.output, l.mean, l.variance, l.batch, l.out_c, l.out_h*l.out_w); |
| | | copy_cpu(l.outputs*l.batch, l.output, 1, l.x_norm, 1); |
| | | } else { |
| | | normalize_cpu(l.output, l.rolling_mean, l.rolling_variance, l.batch, l.out_c, l.out_h*l.out_w); |
| | | } |
| | | scale_bias(l.output, l.scales, l.batch, l.out_c, l.out_h*l.out_w); |
| | | } |
| | | |
| | | void backward_batchnorm_layer(const layer layer, network_state state) |
| | | void backward_batchnorm_layer(const layer l, network_state state) |
| | | { |
| | | backward_scale_cpu(l.x_norm, l.delta, l.batch, l.out_c, l.out_w*l.out_h, l.scale_updates); |
| | | |
| | | scale_bias(l.delta, l.scales, l.batch, l.out_c, l.out_h*l.out_w); |
| | | |
| | | mean_delta_cpu(l.delta, l.variance, l.batch, l.out_c, l.out_w*l.out_h, l.mean_delta); |
| | | variance_delta_cpu(l.x, l.delta, l.mean, l.variance, l.batch, l.out_c, l.out_w*l.out_h, l.variance_delta); |
| | | normalize_delta_cpu(l.x, l.mean, l.variance, l.mean_delta, l.variance_delta, l.batch, l.out_c, l.out_w*l.out_h, l.delta); |
| | | if(l.type == BATCHNORM) copy_cpu(l.outputs*l.batch, l.delta, 1, state.delta, 1); |
| | | } |
| | | |
| | | #ifdef GPU |
| | |
| | | |
| | | void forward_batchnorm_layer_gpu(layer l, network_state state) |
| | | { |
| | | if(l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1); |
| | | if(l.type == CONNECTED){ |
| | | l.out_c = l.outputs; |
| | | l.out_h = l.out_w = 1; |
| | | } |
| | | if (l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1); |
| | | copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1); |
| | | if (state.train) { |
| | | #ifdef CUDNN |
| | | float one = 1; |
| | | float zero = 0; |
| | | cudnnBatchNormalizationForwardTraining(cudnn_handle(), |
| | | CUDNN_BATCHNORM_SPATIAL, |
| | | &one, |
| | | &zero, |
| | | l.normDstTensorDesc, |
| | | l.x_gpu, // input |
| | | l.normDstTensorDesc, |
| | | l.output_gpu, // output |
| | | l.normTensorDesc, |
| | | l.scales_gpu, |
| | | l.biases_gpu, |
| | | .01, |
| | | l.rolling_mean_gpu, // output (should be FP32) |
| | | l.rolling_variance_gpu, // output (should be FP32) |
| | | .00001, |
| | | l.mean_gpu, // output (should be FP32) |
| | | l.variance_gpu); // output (should be FP32) |
| | | #else |
| | | fast_mean_gpu(l.output_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.mean_gpu); |
| | | fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.variance_gpu); |
| | | |
| | | scal_ongpu(l.out_c, .95, l.rolling_mean_gpu, 1); |
| | | axpy_ongpu(l.out_c, .05, l.mean_gpu, 1, l.rolling_mean_gpu, 1); |
| | | scal_ongpu(l.out_c, .95, l.rolling_variance_gpu, 1); |
| | | axpy_ongpu(l.out_c, .05, l.variance_gpu, 1, l.rolling_variance_gpu, 1); |
| | | scal_ongpu(l.out_c, .99, l.rolling_mean_gpu, 1); |
| | | axpy_ongpu(l.out_c, .01, l.mean_gpu, 1, l.rolling_mean_gpu, 1); |
| | | scal_ongpu(l.out_c, .99, l.rolling_variance_gpu, 1); |
| | | axpy_ongpu(l.out_c, .01, l.variance_gpu, 1, l.rolling_variance_gpu, 1); |
| | | |
| | | copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1); |
| | | normalize_gpu(l.output_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_h*l.out_w); |
| | | copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_norm_gpu, 1); |
| | | } else { |
| | | |
| | | scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w); |
| | | add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h); |
| | | #endif |
| | | } |
| | | else { |
| | | normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.out_c, l.out_h*l.out_w); |
| | | scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w); |
| | | add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h); |
| | | } |
| | | |
| | | scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w); |
| | | } |
| | | |
| | | void backward_batchnorm_layer_gpu(const layer l, network_state state) |
| | | void backward_batchnorm_layer_gpu(layer l, network_state state) |
| | | { |
| | | if (!state.train) { |
| | | l.mean_gpu = l.rolling_mean_gpu; |
| | | l.variance_gpu = l.rolling_variance_gpu; |
| | | } |
| | | #ifdef CUDNN |
| | | float one = 1; |
| | | float zero = 0; |
| | | cudnnBatchNormalizationBackward(cudnn_handle(), |
| | | CUDNN_BATCHNORM_SPATIAL, |
| | | &one, |
| | | &zero, |
| | | &one, |
| | | &one, |
| | | l.normDstTensorDesc, |
| | | l.x_gpu, // input |
| | | l.normDstTensorDesc, |
| | | l.delta_gpu, // input |
| | | l.normDstTensorDesc, |
| | | l.x_norm_gpu, // output |
| | | l.normTensorDesc, |
| | | l.scales_gpu, // output (should be FP32) |
| | | l.scale_updates_gpu, // output (should be FP32) |
| | | l.bias_updates_gpu, // output (should be FP32) |
| | | .00001, |
| | | l.mean_gpu, // input (should be FP32) |
| | | l.variance_gpu); // input (should be FP32) |
| | | copy_ongpu(l.outputs*l.batch, l.x_norm_gpu, 1, l.delta_gpu, 1); |
| | | #else |
| | | backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h); |
| | | backward_scale_gpu(l.x_norm_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.scale_updates_gpu); |
| | | |
| | | scale_bias_gpu(l.delta_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w); |
| | |
| | | fast_mean_delta_gpu(l.delta_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.mean_delta_gpu); |
| | | fast_variance_delta_gpu(l.x_gpu, l.delta_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.variance_delta_gpu); |
| | | normalize_delta_gpu(l.x_gpu, l.mean_gpu, l.variance_gpu, l.mean_delta_gpu, l.variance_delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.delta_gpu); |
| | | if(l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, l.delta_gpu, 1, state.delta, 1); |
| | | } |
| | | #endif |
| | | if (l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, l.delta_gpu, 1, state.delta, 1); |
| | | } |
| | | #endif |