| | |
| | | #include "cuda.h" |
| | | } |
| | | |
| | | __global__ void col2im_kernel(float *data_col, |
| | | int channels, int height, int width, |
| | | int ksize, int stride, int pad, float *data_im) |
| | | { |
| | | // src: https://github.com/BVLC/caffe/blob/master/src/caffe/util/im2col.cu |
| | | // You may also want to read: https://github.com/BVLC/caffe/blob/master/LICENSE |
| | | |
| | | int height_col = (height - ksize) / stride + 1; |
| | | int width_col = (width - ksize) / stride + 1; |
| | | if (pad){ |
| | | height_col = 1 + (height-1) / stride; |
| | | width_col = 1 + (width-1) / stride; |
| | | pad = ksize/2; |
| | | } |
| | | |
| | | int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; |
| | | if(id >= channels*height*width) return; |
| | | |
| | | int index = id; |
| | | int w = id%width + pad; |
| | | id /= width; |
| | | int h = id%height + pad; |
| | | id /= height; |
| | | int c = id%channels; |
| | | |
| | | int w_start = (w-ksize+stride)/stride; |
| | | int w_end = w/stride + 1; |
| | | |
| | | int h_start = (h-ksize+stride)/stride; |
| | | int h_end = h/stride + 1; |
| | | |
| | | // int rows = channels * ksize * ksize; |
| | | // int cols = height_col*width_col; |
| | | int col_offset = (c*ksize*ksize + h * ksize + w)*height_col*width_col; |
| | | int h_coeff = (1-stride*ksize*height_col)*width_col; |
| | | int w_coeff = 1-stride*height_col*width_col; |
| | | float val = 0; |
| | | int h_col, w_col; |
| | | for(h_col = h_start; h_col < h_end; ++h_col){ |
| | | for(w_col = w_start; w_col < w_end; ++w_col){ |
| | | int col_index = col_offset +h_col*h_coeff + w_col*w_coeff; |
| | | float part = (w_col < 0 || h_col < 0 || h_col >= height_col || w_col >= width_col) ? 0 : data_col[col_index]; |
| | | val += part; |
| | | __global__ void col2im_gpu_kernel(const int n, const float* data_col, |
| | | const int height, const int width, const int ksize, |
| | | const int pad, |
| | | const int stride, |
| | | const int height_col, const int width_col, |
| | | float *data_im) { |
| | | int index = blockIdx.x*blockDim.x+threadIdx.x; |
| | | for(; index < n; index += blockDim.x*gridDim.x){ |
| | | float val = 0; |
| | | int w = index % width + pad; |
| | | int h = (index / width) % height + pad; |
| | | int c = index / (width * height); |
| | | // compute the start and end of the output |
| | | int w_col_start = (w < ksize) ? 0 : (w - ksize) / stride + 1; |
| | | int w_col_end = min(w / stride + 1, width_col); |
| | | int h_col_start = (h < ksize) ? 0 : (h - ksize) / stride + 1; |
| | | int h_col_end = min(h / stride + 1, height_col); |
| | | // equivalent implementation |
| | | int offset = |
| | | (c * ksize * ksize + h * ksize + w) * height_col * width_col; |
| | | int coeff_h_col = (1 - stride * ksize * height_col) * width_col; |
| | | int coeff_w_col = (1 - stride * height_col * width_col); |
| | | for (int h_col = h_col_start; h_col < h_col_end; ++h_col) { |
| | | for (int w_col = w_col_start; w_col < w_col_end; ++w_col) { |
| | | val += data_col[offset + h_col * coeff_h_col + w_col * coeff_w_col]; |
| | | } |
| | | } |
| | | data_im[index] = val; |
| | | } |
| | | data_im[index] = val; |
| | | } |
| | | |
| | | void col2im_ongpu(float *im, |
| | | int channels, int height, int width, |
| | | int ksize, int stride, int pad, float *data_col){ |
| | | // We are going to launch channels * height_col * width_col kernels, each |
| | | // kernel responsible for copying a single-channel grid. |
| | | pad = pad ? ksize/2 : 0; |
| | | int height_col = (height + 2 * pad - ksize) / stride + 1; |
| | | int width_col = (width + 2 * pad - ksize) / stride + 1; |
| | | int num_kernels = channels * height * width; |
| | | col2im_gpu_kernel<<<(num_kernels+BLOCK-1)/BLOCK, |
| | | BLOCK>>>( |
| | | num_kernels, data_col, height, width, ksize, pad, |
| | | stride, height_col, |
| | | width_col, im); |
| | | } |
| | | |
| | | /* |
| | | __global__ void col2im_kernel(float *data_col, |
| | | int channels, int height, int width, |
| | | int ksize, int stride, int pad, float *data_im) |
| | | { |
| | | |
| | | int height_col = (height - ksize) / stride + 1; |
| | | int width_col = (width - ksize) / stride + 1; |
| | | if (pad){ |
| | | height_col = 1 + (height-1) / stride; |
| | | width_col = 1 + (width-1) / stride; |
| | | pad = ksize/2; |
| | | } |
| | | |
| | | int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; |
| | | if(id >= channels*height*width) return; |
| | | |
| | | int index = id; |
| | | int w = id%width + pad; |
| | | id /= width; |
| | | int h = id%height + pad; |
| | | id /= height; |
| | | int c = id%channels; |
| | | |
| | | int w_start = (w-ksize+stride)/stride; |
| | | int w_end = w/stride + 1; |
| | | |
| | | int h_start = (h-ksize+stride)/stride; |
| | | int h_end = h/stride + 1; |
| | | |
| | | // int rows = channels * ksize * ksize; |
| | | // int cols = height_col*width_col; |
| | | int col_offset = (c*ksize*ksize + h * ksize + w)*height_col*width_col; |
| | | int h_coeff = (1-stride*ksize*height_col)*width_col; |
| | | int w_coeff = 1-stride*height_col*width_col; |
| | | float val = 0; |
| | | int h_col, w_col; |
| | | for(h_col = h_start; h_col < h_end; ++h_col){ |
| | | for(w_col = w_start; w_col < w_end; ++w_col){ |
| | | int col_index = col_offset +h_col*h_coeff + w_col*w_coeff; |
| | | float part = (w_col < 0 || h_col < 0 || h_col >= height_col || w_col >= width_col) ? 0 : data_col[col_index]; |
| | | val += part; |
| | | } |
| | | } |
| | | data_im[index] = val; |
| | | } |
| | | |
| | | |
| | | extern "C" void col2im_ongpu(float *data_col, |
| | | int channels, int height, int width, |
| | | int ksize, int stride, int pad, float *data_im) |
| | | int channels, int height, int width, |
| | | int ksize, int stride, int pad, float *data_im) |
| | | { |
| | | |
| | | size_t n = channels*height*width; |
| | | size_t n = channels*height*width; |
| | | |
| | | col2im_kernel<<<cuda_gridsize(n), BLOCK>>>(data_col, channels, height, width, ksize, stride, pad, data_im); |
| | | check_error(cudaPeekAtLastError()); |
| | | col2im_kernel<<<cuda_gridsize(n), BLOCK>>>(data_col, channels, height, width, ksize, stride, pad, data_im); |
| | | check_error(cudaPeekAtLastError()); |
| | | } |
| | | */ |