| | |
| | | |
| | | int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90}; |
| | | |
| | | void draw_coco(image im, float *box, int side, int objectness, char *label) |
| | | void draw_coco(image im, float *pred, int side, char *label) |
| | | { |
| | | int classes = 80; |
| | | int elems = 4+classes+objectness; |
| | | int classes = 81; |
| | | int elems = 4+classes; |
| | | int j; |
| | | int r, c; |
| | | |
| | | for(r = 0; r < side; ++r){ |
| | | for(c = 0; c < side; ++c){ |
| | | j = (r*side + c) * elems; |
| | | float scale = 1; |
| | | if(objectness) scale = 1 - box[j++]; |
| | | int class = max_index(box+j, classes); |
| | | if(scale * box[j+class] > 0.2){ |
| | | int width = box[j+class]*5 + 1; |
| | | printf("%f %s\n", scale * box[j+class], coco_classes[class]); |
| | | int class = max_index(pred+j, classes); |
| | | if (class == 0) continue; |
| | | if (pred[j+class] > 0.2){ |
| | | int width = pred[j+class]*5 + 1; |
| | | printf("%f %s\n", pred[j+class], coco_classes[class-1]); |
| | | float red = get_color(0,class,classes); |
| | | float green = get_color(1,class,classes); |
| | | float blue = get_color(2,class,classes); |
| | | |
| | | j += classes; |
| | | float x = box[j+0]; |
| | | float y = box[j+1]; |
| | | x = (x+c)/side; |
| | | y = (y+r)/side; |
| | | float w = box[j+2]; //*maxwidth; |
| | | float h = box[j+3]; //*maxheight; |
| | | h = h*h; |
| | | w = w*w; |
| | | |
| | | int left = (x-w/2)*im.w; |
| | | int right = (x+w/2)*im.w; |
| | | int top = (y-h/2)*im.h; |
| | | int bot = (y+h/2)*im.h; |
| | | draw_box_width(im, left, top, right, bot, width, red, green, blue); |
| | | box predict = {pred[j+0], pred[j+1], pred[j+2], pred[j+3]}; |
| | | box anchor = {(c+.5)/side, (r+.5)/side, .5, .5}; |
| | | box decode = decode_box(predict, anchor); |
| | | |
| | | draw_bbox(im, decode, width, red, green, blue); |
| | | } |
| | | } |
| | | } |
| | |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | detection_layer layer = get_network_detection_layer(net); |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 128; |
| | | int i = net.seen/imgs; |
| | | data train, buffer; |
| | | |
| | | int classes = layer.classes; |
| | | int background = layer.objectness; |
| | | int side = sqrt(get_detection_layer_locations(layer)); |
| | | int classes = 81; |
| | | int side = 7; |
| | | |
| | | char **paths; |
| | | list *plist = get_paths(train_images); |
| | | int N = plist->size; |
| | | char **paths = (char **)list_to_array(plist); |
| | | |
| | | paths = (char **)list_to_array(plist); |
| | | pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer); |
| | | load_args args = {0}; |
| | | args.w = net.w; |
| | | args.h = net.h; |
| | | args.paths = paths; |
| | | args.n = imgs; |
| | | args.m = plist->size; |
| | | args.classes = classes; |
| | | args.num_boxes = side; |
| | | args.d = &buffer; |
| | | args.type = REGION_DATA; |
| | | |
| | | pthread_t load_thread = load_data_in_thread(args); |
| | | clock_t time; |
| | | while(i*imgs < N*120){ |
| | | i += 1; |
| | | time=clock(); |
| | | pthread_join(load_thread, 0); |
| | | train = buffer; |
| | | load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer); |
| | | load_thread = load_data_in_thread(args); |
| | | |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | |
| | | /* |
| | | image im = float_to_image(net.w, net.h, 3, train.X.vals[114]); |
| | | image copy = copy_image(im); |
| | | draw_coco(copy, train.y.vals[114], 7, layer.objectness, "truth"); |
| | | draw_coco(copy, train.y.vals[114], 7, "truth"); |
| | | cvWaitKey(0); |
| | | free_image(copy); |
| | | */ |
| | |
| | | int nms = 1; |
| | | float iou_thresh = .5; |
| | | |
| | | load_args args = {0}; |
| | | args.w = net.w; |
| | | args.h = net.h; |
| | | args.type = IMAGE_DATA; |
| | | |
| | | int nthreads = 8; |
| | | image *val = calloc(nthreads, sizeof(image)); |
| | | image *val_resized = calloc(nthreads, sizeof(image)); |
| | |
| | | image *buf_resized = calloc(nthreads, sizeof(image)); |
| | | pthread_t *thr = calloc(nthreads, sizeof(pthread_t)); |
| | | for(t = 0; t < nthreads; ++t){ |
| | | thr[t] = load_image_thread(paths[i+t], &buf[t], &buf_resized[t], net.w, net.h); |
| | | args.path = paths[i+t]; |
| | | args.im = &buf[t]; |
| | | args.resized = &buf_resized[t]; |
| | | thr[t] = load_data_in_thread(args); |
| | | } |
| | | time_t start = time(0); |
| | | for(i = nthreads; i < m+nthreads; i += nthreads){ |
| | |
| | | val_resized[t] = buf_resized[t]; |
| | | } |
| | | for(t = 0; t < nthreads && i+t < m; ++t){ |
| | | thr[t] = load_image_thread(paths[i+t], &buf[t], &buf_resized[t], net.w, net.h); |
| | | args.path = paths[i+t]; |
| | | args.im = &buf[t]; |
| | | args.resized = &buf_resized[t]; |
| | | thr[t] = load_data_in_thread(args); |
| | | } |
| | | for(t = 0; t < nthreads && i+t-nthreads < m; ++t){ |
| | | char *path = paths[i+t-nthreads]; |
| | |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | detection_layer layer = get_network_detection_layer(net); |
| | | set_batch_network(&net, 1); |
| | | srand(2222222); |
| | | clock_t time; |
| | |
| | | time=clock(); |
| | | float *predictions = network_predict(net, X); |
| | | printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); |
| | | draw_coco(im, predictions, 7, layer.objectness, "predictions"); |
| | | draw_coco(im, predictions, 7, "predictions"); |
| | | free_image(im); |
| | | free_image(sized); |
| | | #ifdef OPENCV |