| | |
| | | |
| | | char *class_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"}; |
| | | |
| | | void draw_detection(image im, float *box, int side, char *label) |
| | | void draw_detection(image im, float *box, int side, int objectness, char *label) |
| | | { |
| | | int classes = 20; |
| | | int elems = 4+classes; |
| | | int elems = 4+classes+objectness; |
| | | int j; |
| | | int r, c; |
| | | |
| | | for(r = 0; r < side; ++r){ |
| | | for(c = 0; c < side; ++c){ |
| | | j = (r*side + c) * elems; |
| | | float scale = 1; |
| | | if(objectness) scale = 1 - box[j++]; |
| | | int class = max_index(box+j, classes); |
| | | if(box[j+class] > 0.2){ |
| | | if(scale * box[j+class] > 0.2){ |
| | | int width = box[j+class]*5 + 1; |
| | | printf("%f %s\n", box[j+class], class_names[class]); |
| | | printf("%f %s\n", scale * box[j+class], class_names[class]); |
| | | float red = get_color(0,class,classes); |
| | | float green = get_color(1,class,classes); |
| | | float blue = get_color(2,class,classes); |
| | |
| | | { |
| | | srand(time(0)); |
| | | data_seed = time(0); |
| | | int imgnet = 0; |
| | | char *base = basecfg(cfgfile); |
| | | printf("%s\n", base); |
| | | float avg_loss = -1; |
| | |
| | | data train, buffer; |
| | | |
| | | int classes = layer.classes; |
| | | int background = (layer.background || layer.objectness); |
| | | printf("%d\n", background); |
| | | int background = layer.objectness; |
| | | int side = sqrt(get_detection_layer_locations(layer)); |
| | | |
| | | char **paths; |
| | | list *plist; |
| | | if (imgnet){ |
| | | plist = get_paths("/home/pjreddie/data/imagenet/det.train.list"); |
| | | }else{ |
| | | //plist = get_paths("/home/pjreddie/data/voc/no_2012_val.txt"); |
| | | //plist = get_paths("/home/pjreddie/data/voc/no_2007_test.txt"); |
| | | //plist = get_paths("/home/pjreddie/data/voc/val_2012.txt"); |
| | | //plist = get_paths("/home/pjreddie/data/voc/no_2007_test.txt"); |
| | | //plist = get_paths("/home/pjreddie/data/coco/trainval.txt"); |
| | | plist = get_paths("/home/pjreddie/data/voc/all2007-2012.txt"); |
| | | } |
| | | list *plist = get_paths("/home/pjreddie/data/voc/test/train.txt"); |
| | | int N = plist->size; |
| | | |
| | | paths = (char **)list_to_array(plist); |
| | | pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer); |
| | | clock_t time; |
| | | while(1){ |
| | | while(i*imgs < N*120){ |
| | | i += 1; |
| | | time=clock(); |
| | | pthread_join(load_thread, 0); |
| | | train = buffer; |
| | | load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer); |
| | | |
| | | /* |
| | | image im = float_to_image(net.w, net.h, 3, train.X.vals[114]); |
| | | image copy = copy_image(im); |
| | | draw_detection(copy, train.y.vals[114], 7, "truth"); |
| | | cvWaitKey(0); |
| | | free_image(copy); |
| | | */ |
| | | |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | | float loss = train_network(net, train); |
| | | net.seen += imgs; |
| | | if (avg_loss < 0) avg_loss = loss; |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | |
| | | printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs); |
| | | if(i == 100){ |
| | | if((i-1)*imgs <= N && i*imgs > N){ |
| | | fprintf(stderr, "Starting second stage...\n"); |
| | | net.learning_rate *= 10; |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/%s_first_stage.weights", base); |
| | | save_weights(net, buff); |
| | | } |
| | | if((i-1)*imgs <= 80*N && i*imgs > N*80){ |
| | | fprintf(stderr, "Second stage done.\n"); |
| | | net.learning_rate *= .1; |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/%s_second_stage.weights", base); |
| | | save_weights(net, buff); |
| | | return; |
| | | } |
| | | if(i%1000==0){ |
| | | char buff[256]; |
| | |
| | | } |
| | | free_data(train); |
| | | } |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/%s_final.weights",base); |
| | | save_weights(net, buff); |
| | | } |
| | | |
| | | void convert_detections(float *predictions, int classes, int objectness, int background, int num_boxes, int w, int h, float thresh, float **probs, box *boxes) |
| | |
| | | load_weights(&net, weightfile); |
| | | } |
| | | detection_layer layer = get_network_detection_layer(net); |
| | | if (!layer.joint) fprintf(stderr, "Detection layer should use joint prediction to draw correctly.\n"); |
| | | int im_size = 448; |
| | | set_batch_network(&net, 1); |
| | | srand(2222222); |
| | | clock_t time; |
| | |
| | | strtok(input, "\n"); |
| | | } |
| | | image im = load_image_color(input,0,0); |
| | | image sized = resize_image(im, im_size, im_size); |
| | | image sized = resize_image(im, net.w, net.h); |
| | | float *X = sized.data; |
| | | time=clock(); |
| | | float *predictions = network_predict(net, X); |
| | | printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); |
| | | draw_detection(im, predictions, 7, "predictions"); |
| | | draw_detection(im, predictions, 7, layer.objectness, "predictions"); |
| | | free_image(im); |
| | | free_image(sized); |
| | | #ifdef OPENCV |