| | |
| | | #include "convolutional_layer.h" |
| | | #include "deconvolutional_layer.h" |
| | | #include "detection_layer.h" |
| | | #include "region_layer.h" |
| | | #include "normalization_layer.h" |
| | | #include "maxpool_layer.h" |
| | | #include "avgpool_layer.h" |
| | |
| | | float get_current_rate(network net) |
| | | { |
| | | int batch_num = get_current_batch(net); |
| | | int i; |
| | | float rate; |
| | | switch (net.policy) { |
| | | case CONSTANT: |
| | | return net.learning_rate; |
| | | case STEP: |
| | | return net.learning_rate * pow(net.gamma, batch_num/net.step); |
| | | return net.learning_rate * pow(net.scale, batch_num/net.step); |
| | | case STEPS: |
| | | rate = net.learning_rate; |
| | | for(i = 0; i < net.num_steps; ++i){ |
| | | if(net.steps[i] > batch_num) return rate; |
| | | rate *= net.scales[i]; |
| | | } |
| | | return rate; |
| | | case EXP: |
| | | return net.learning_rate * pow(net.gamma, batch_num); |
| | | case POLY: |
| | | return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power); |
| | | case SIG: |
| | | return net.learning_rate * (1./(1.+exp(net.gamma*(batch_num - net.step)))); |
| | | default: |
| | | fprintf(stderr, "Policy is weird!\n"); |
| | | return net.learning_rate; |
| | |
| | | return "softmax"; |
| | | case DETECTION: |
| | | return "detection"; |
| | | case REGION: |
| | | return "region"; |
| | | case DROPOUT: |
| | | return "dropout"; |
| | | case CROP: |
| | |
| | | forward_normalization_layer(l, state); |
| | | } else if(l.type == DETECTION){ |
| | | forward_detection_layer(l, state); |
| | | } else if(l.type == REGION){ |
| | | forward_region_layer(l, state); |
| | | } else if(l.type == CONNECTED){ |
| | | forward_connected_layer(l, state); |
| | | } else if(l.type == CROP){ |
| | |
| | | sum += net.layers[i].cost[0]; |
| | | ++count; |
| | | } |
| | | if(net.layers[i].type == REGION){ |
| | | sum += net.layers[i].cost[0]; |
| | | ++count; |
| | | } |
| | | } |
| | | return sum/count; |
| | | } |
| | |
| | | backward_dropout_layer(l, state); |
| | | } else if(l.type == DETECTION){ |
| | | backward_detection_layer(l, state); |
| | | } else if(l.type == REGION){ |
| | | backward_region_layer(l, state); |
| | | } else if(l.type == SOFTMAX){ |
| | | if(i != 0) backward_softmax_layer(l, state); |
| | | } else if(l.type == CONNECTED){ |
| | |
| | | //if(w == net->w && h == net->h) return 0; |
| | | net->w = w; |
| | | net->h = h; |
| | | int inputs = 0; |
| | | //fprintf(stderr, "Resizing to %d x %d...", w, h); |
| | | //fflush(stderr); |
| | | for (i = 0; i < net->n; ++i){ |
| | |
| | | break; |
| | | }else if(l.type == NORMALIZATION){ |
| | | resize_normalization_layer(&l, w, h); |
| | | }else if(l.type == COST){ |
| | | resize_cost_layer(&l, inputs); |
| | | }else{ |
| | | error("Cannot resize this type of layer"); |
| | | } |
| | | inputs = l.outputs; |
| | | net->layers[i] = l; |
| | | w = l.out_w; |
| | | h = l.out_h; |
| | |
| | | return acc; |
| | | } |
| | | |
| | | float *network_accuracies(network net, data d) |
| | | float *network_accuracies(network net, data d, int n) |
| | | { |
| | | static float acc[2]; |
| | | matrix guess = network_predict_data(net, d); |
| | | acc[0] = matrix_topk_accuracy(d.y, guess,1); |
| | | acc[1] = matrix_topk_accuracy(d.y, guess,5); |
| | | acc[0] = matrix_topk_accuracy(d.y, guess, 1); |
| | | acc[1] = matrix_topk_accuracy(d.y, guess, n); |
| | | free_matrix(guess); |
| | | return acc; |
| | | } |