| | |
| | | float green = get_color(1,class,classes); |
| | | float blue = get_color(2,class,classes); |
| | | |
| | | //float maxheight = distance_from_edge(r, side); |
| | | //float maxwidth = distance_from_edge(c, side); |
| | | j += classes; |
| | | int d = im.w/side; |
| | | int y = r*d+box[j]*d; |
| | | int x = c*d+box[j+1]*d; |
| | | int h = box[j+2]*im.h; |
| | | int w = box[j+3]*im.w; |
| | | draw_box(im, x-w/2, y-h/2, x+w/2, y+h/2,red,green,blue); |
| | | float y = box[j+0]; |
| | | float x = box[j+1]; |
| | | x = (x+c)/side; |
| | | y = (y+r)/side; |
| | | float h = box[j+2]; //*maxheight; |
| | | float w = box[j+3]; //*maxwidth; |
| | | //printf("coords %f %f %f %f\n", x, y, w, h); |
| | | |
| | | int left = (x-w/2)*im.w; |
| | | int right = (x+w/2)*im.w; |
| | | int top = (y-h/2)*im.h; |
| | | int bot = (y+h/2)*im.h; |
| | | draw_box(im, left, top, right, bot, red, green, blue); |
| | | } |
| | | } |
| | | } |
| | |
| | | char **paths = (char **)list_to_array(plist); |
| | | printf("%d\n", plist->size); |
| | | data train, buffer; |
| | | int im_dim = 512; |
| | | int jitter = 64; |
| | | int im_dim = 448; |
| | | int classes = 20; |
| | | int background = 1; |
| | | pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, background, &buffer); |
| | | pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, background, &buffer); |
| | | clock_t time; |
| | | while(1){ |
| | | i += 1; |
| | | time=clock(); |
| | | pthread_join(load_thread, 0); |
| | | train = buffer; |
| | | load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, background, &buffer); |
| | | load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, background, &buffer); |
| | | |
| | | /* |
| | | image im = float_to_image(im_dim - jitter, im_dim-jitter, 3, train.X.vals[114]); |
| | | draw_detection(im, train.y.vals[114], 7); |
| | | show_image(im, "truth"); |
| | | cvWaitKey(0); |
| | | */ |
| | | //image im = float_to_image(im_dim, im_dim, 3, train.X.vals[114]); |
| | | //draw_detection(im, train.y.vals[114], 7); |
| | | |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | |
| | | int classes = 20; |
| | | int background = 0; |
| | | int nuisance = 1; |
| | | int num_output = 7*7*(4+classes+background+nuisance); |
| | | int num_boxes = 7; |
| | | int per_box = 4+classes+background+nuisance; |
| | | int num_output = num_boxes*num_boxes*per_box; |
| | | |
| | | int m = plist->size; |
| | | int i = 0; |
| | |
| | | matrix pred = network_predict_data(net, val); |
| | | int j, k, class; |
| | | for(j = 0; j < pred.rows; ++j){ |
| | | for(k = 0; k < pred.cols; k += classes+4+background+nuisance){ |
| | | for(k = 0; k < pred.cols; k += per_box){ |
| | | float scale = 1.; |
| | | if(nuisance) scale = 1.-pred.vals[j][k]; |
| | | for(class = 0; class < classes; ++class){ |
| | | int index = (k)/(classes+4+background+nuisance); |
| | | int r = index/7; |
| | | int c = index%7; |
| | | int index = k/per_box; |
| | | int row = index / num_boxes; |
| | | int col = index % num_boxes; |
| | | if (nuisance) scale = 1.-pred.vals[j][k]; |
| | | for (class = 0; class < classes; ++class){ |
| | | int ci = k+classes+background+nuisance; |
| | | float y = (r + pred.vals[j][ci + 0])/7.; |
| | | float x = (c + pred.vals[j][ci + 1])/7.; |
| | | float h = pred.vals[j][ci + 2]; |
| | | float w = pred.vals[j][ci + 3]; |
| | | float y = (pred.vals[j][ci + 0] + row)/num_boxes; |
| | | float x = (pred.vals[j][ci + 1] + col)/num_boxes; |
| | | float h = pred.vals[j][ci + 2]; //* distance_from_edge(row, num_boxes); |
| | | h = h*h; |
| | | float w = pred.vals[j][ci + 3]; //* distance_from_edge(col, num_boxes); |
| | | w = w*w; |
| | | printf("%d %d %f %f %f %f %f\n", (i-1)*m/splits + j, class, scale*pred.vals[j][k+class+background+nuisance], y, x, h, w); |
| | | } |
| | | } |