| | |
| | | #include "deconvolutional_layer.h" |
| | | #include "connected_layer.h" |
| | | #include "maxpool_layer.h" |
| | | #include "normalization_layer.h" |
| | | #include "softmax_layer.h" |
| | | #include "dropout_layer.h" |
| | | #include "detection_layer.h" |
| | | #include "route_layer.h" |
| | | #include "list.h" |
| | | #include "option_list.h" |
| | | #include "utils.h" |
| | |
| | | int is_crop(section *s); |
| | | int is_cost(section *s); |
| | | int is_detection(section *s); |
| | | int is_normalization(section *s); |
| | | int is_route(section *s); |
| | | list *read_cfg(char *filename); |
| | | |
| | | void free_section(section *s) |
| | |
| | | int c; |
| | | } size_params; |
| | | |
| | | deconvolutional_layer *parse_deconvolutional(list *options, size_params params) |
| | | deconvolutional_layer parse_deconvolutional(list *options, size_params params) |
| | | { |
| | | int n = option_find_int(options, "filters",1); |
| | | int size = option_find_int(options, "size",1); |
| | |
| | | batch=params.batch; |
| | | if(!(h && w && c)) error("Layer before deconvolutional layer must output image."); |
| | | |
| | | deconvolutional_layer *layer = make_deconvolutional_layer(batch,h,w,c,n,size,stride,activation); |
| | | deconvolutional_layer layer = make_deconvolutional_layer(batch,h,w,c,n,size,stride,activation); |
| | | |
| | | char *weights = option_find_str(options, "weights", 0); |
| | | char *biases = option_find_str(options, "biases", 0); |
| | | parse_data(weights, layer->filters, c*n*size*size); |
| | | parse_data(biases, layer->biases, n); |
| | | parse_data(weights, layer.filters, c*n*size*size); |
| | | parse_data(biases, layer.biases, n); |
| | | #ifdef GPU |
| | | if(weights || biases) push_deconvolutional_layer(*layer); |
| | | if(weights || biases) push_deconvolutional_layer(layer); |
| | | #endif |
| | | option_unused(options); |
| | | return layer; |
| | | } |
| | | |
| | | convolutional_layer *parse_convolutional(list *options, size_params params) |
| | | convolutional_layer parse_convolutional(list *options, size_params params) |
| | | { |
| | | int n = option_find_int(options, "filters",1); |
| | | int size = option_find_int(options, "size",1); |
| | |
| | | batch=params.batch; |
| | | if(!(h && w && c)) error("Layer before convolutional layer must output image."); |
| | | |
| | | convolutional_layer *layer = make_convolutional_layer(batch,h,w,c,n,size,stride,pad,activation); |
| | | convolutional_layer layer = make_convolutional_layer(batch,h,w,c,n,size,stride,pad,activation); |
| | | |
| | | char *weights = option_find_str(options, "weights", 0); |
| | | char *biases = option_find_str(options, "biases", 0); |
| | | parse_data(weights, layer->filters, c*n*size*size); |
| | | parse_data(biases, layer->biases, n); |
| | | parse_data(weights, layer.filters, c*n*size*size); |
| | | parse_data(biases, layer.biases, n); |
| | | #ifdef GPU |
| | | if(weights || biases) push_convolutional_layer(*layer); |
| | | if(weights || biases) push_convolutional_layer(layer); |
| | | #endif |
| | | option_unused(options); |
| | | return layer; |
| | | } |
| | | |
| | | connected_layer *parse_connected(list *options, size_params params) |
| | | connected_layer parse_connected(list *options, size_params params) |
| | | { |
| | | int output = option_find_int(options, "output",1); |
| | | char *activation_s = option_find_str(options, "activation", "logistic"); |
| | | ACTIVATION activation = get_activation(activation_s); |
| | | |
| | | connected_layer *layer = make_connected_layer(params.batch, params.inputs, output, activation); |
| | | connected_layer layer = make_connected_layer(params.batch, params.inputs, output, activation); |
| | | |
| | | char *weights = option_find_str(options, "weights", 0); |
| | | char *biases = option_find_str(options, "biases", 0); |
| | | parse_data(biases, layer->biases, output); |
| | | parse_data(weights, layer->weights, params.inputs*output); |
| | | parse_data(biases, layer.biases, output); |
| | | parse_data(weights, layer.weights, params.inputs*output); |
| | | #ifdef GPU |
| | | if(weights || biases) push_connected_layer(*layer); |
| | | if(weights || biases) push_connected_layer(layer); |
| | | #endif |
| | | option_unused(options); |
| | | return layer; |
| | | } |
| | | |
| | | softmax_layer *parse_softmax(list *options, size_params params) |
| | | softmax_layer parse_softmax(list *options, size_params params) |
| | | { |
| | | int groups = option_find_int(options, "groups",1); |
| | | softmax_layer *layer = make_softmax_layer(params.batch, params.inputs, groups); |
| | | softmax_layer layer = make_softmax_layer(params.batch, params.inputs, groups); |
| | | option_unused(options); |
| | | return layer; |
| | | } |
| | | |
| | | detection_layer *parse_detection(list *options, size_params params) |
| | | detection_layer parse_detection(list *options, size_params params) |
| | | { |
| | | int coords = option_find_int(options, "coords", 1); |
| | | int classes = option_find_int(options, "classes", 1); |
| | | int rescore = option_find_int(options, "rescore", 1); |
| | | int nuisance = option_find_int(options, "nuisance", 0); |
| | | int background = option_find_int(options, "background", 1); |
| | | detection_layer *layer = make_detection_layer(params.batch, params.inputs, classes, coords, rescore, background, nuisance); |
| | | int rescore = option_find_int(options, "rescore", 0); |
| | | int joint = option_find_int(options, "joint", 0); |
| | | int objectness = option_find_int(options, "objectness", 0); |
| | | int background = option_find_int(options, "background", 0); |
| | | detection_layer layer = make_detection_layer(params.batch, params.inputs, classes, coords, joint, rescore, background, objectness); |
| | | option_unused(options); |
| | | return layer; |
| | | } |
| | | |
| | | cost_layer *parse_cost(list *options, size_params params) |
| | | cost_layer parse_cost(list *options, size_params params) |
| | | { |
| | | char *type_s = option_find_str(options, "type", "sse"); |
| | | COST_TYPE type = get_cost_type(type_s); |
| | | cost_layer *layer = make_cost_layer(params.batch, params.inputs, type); |
| | | cost_layer layer = make_cost_layer(params.batch, params.inputs, type); |
| | | option_unused(options); |
| | | return layer; |
| | | } |
| | | |
| | | crop_layer *parse_crop(list *options, size_params params) |
| | | crop_layer parse_crop(list *options, size_params params) |
| | | { |
| | | int crop_height = option_find_int(options, "crop_height",1); |
| | | int crop_width = option_find_int(options, "crop_width",1); |
| | | int flip = option_find_int(options, "flip",0); |
| | | float angle = option_find_float(options, "angle",0); |
| | | float saturation = option_find_float(options, "saturation",1); |
| | | float exposure = option_find_float(options, "exposure",1); |
| | | |
| | | int batch,h,w,c; |
| | | h = params.h; |
| | |
| | | batch=params.batch; |
| | | if(!(h && w && c)) error("Layer before crop layer must output image."); |
| | | |
| | | crop_layer *layer = make_crop_layer(batch,h,w,c,crop_height,crop_width,flip, angle); |
| | | crop_layer l = make_crop_layer(batch,h,w,c,crop_height,crop_width,flip, angle, saturation, exposure); |
| | | option_unused(options); |
| | | return layer; |
| | | return l; |
| | | } |
| | | |
| | | maxpool_layer *parse_maxpool(list *options, size_params params) |
| | | maxpool_layer parse_maxpool(list *options, size_params params) |
| | | { |
| | | int stride = option_find_int(options, "stride",1); |
| | | int size = option_find_int(options, "size",stride); |
| | |
| | | batch=params.batch; |
| | | if(!(h && w && c)) error("Layer before maxpool layer must output image."); |
| | | |
| | | maxpool_layer *layer = make_maxpool_layer(batch,h,w,c,size,stride); |
| | | maxpool_layer layer = make_maxpool_layer(batch,h,w,c,size,stride); |
| | | option_unused(options); |
| | | return layer; |
| | | } |
| | | |
| | | dropout_layer *parse_dropout(list *options, size_params params) |
| | | dropout_layer parse_dropout(list *options, size_params params) |
| | | { |
| | | float probability = option_find_float(options, "probability", .5); |
| | | dropout_layer *layer = make_dropout_layer(params.batch, params.inputs, probability); |
| | | dropout_layer layer = make_dropout_layer(params.batch, params.inputs, probability); |
| | | option_unused(options); |
| | | return layer; |
| | | } |
| | | |
| | | normalization_layer *parse_normalization(list *options, size_params params) |
| | | route_layer parse_route(list *options, size_params params, network net) |
| | | { |
| | | int size = option_find_int(options, "size",1); |
| | | float alpha = option_find_float(options, "alpha", 0.); |
| | | float beta = option_find_float(options, "beta", 1.); |
| | | float kappa = option_find_float(options, "kappa", 1.); |
| | | char *l = option_find(options, "layers"); |
| | | int len = strlen(l); |
| | | if(!l) error("Route Layer must specify input layers"); |
| | | int n = 1; |
| | | int i; |
| | | for(i = 0; i < len; ++i){ |
| | | if (l[i] == ',') ++n; |
| | | } |
| | | |
| | | int batch,h,w,c; |
| | | h = params.h; |
| | | w = params.w; |
| | | c = params.c; |
| | | batch=params.batch; |
| | | if(!(h && w && c)) error("Layer before normalization layer must output image."); |
| | | int *layers = calloc(n, sizeof(int)); |
| | | int *sizes = calloc(n, sizeof(int)); |
| | | for(i = 0; i < n; ++i){ |
| | | int index = atoi(l); |
| | | l = strchr(l, ',')+1; |
| | | layers[i] = index; |
| | | sizes[i] = net.layers[index].outputs; |
| | | } |
| | | int batch = params.batch; |
| | | |
| | | normalization_layer *layer = make_normalization_layer(batch,h,w,c,size, alpha, beta, kappa); |
| | | route_layer layer = make_route_layer(batch, n, layers, sizes); |
| | | |
| | | convolutional_layer first = net.layers[layers[0]]; |
| | | layer.out_w = first.out_w; |
| | | layer.out_h = first.out_h; |
| | | layer.out_c = first.out_c; |
| | | for(i = 1; i < n; ++i){ |
| | | int index = layers[i]; |
| | | convolutional_layer next = net.layers[index]; |
| | | if(next.out_w == first.out_w && next.out_h == first.out_h){ |
| | | layer.out_c += next.out_c; |
| | | }else{ |
| | | layer.out_h = layer.out_w = layer.out_c = 0; |
| | | } |
| | | } |
| | | |
| | | option_unused(options); |
| | | return layer; |
| | | } |
| | |
| | | fprintf(stderr, "%d: ", count); |
| | | s = (section *)n->val; |
| | | options = s->options; |
| | | layer l = {0}; |
| | | if(is_convolutional(s)){ |
| | | convolutional_layer *layer = parse_convolutional(options, params); |
| | | net.types[count] = CONVOLUTIONAL; |
| | | net.layers[count] = layer; |
| | | l = parse_convolutional(options, params); |
| | | }else if(is_deconvolutional(s)){ |
| | | deconvolutional_layer *layer = parse_deconvolutional(options, params); |
| | | net.types[count] = DECONVOLUTIONAL; |
| | | net.layers[count] = layer; |
| | | l = parse_deconvolutional(options, params); |
| | | }else if(is_connected(s)){ |
| | | connected_layer *layer = parse_connected(options, params); |
| | | net.types[count] = CONNECTED; |
| | | net.layers[count] = layer; |
| | | l = parse_connected(options, params); |
| | | }else if(is_crop(s)){ |
| | | crop_layer *layer = parse_crop(options, params); |
| | | net.types[count] = CROP; |
| | | net.layers[count] = layer; |
| | | l = parse_crop(options, params); |
| | | }else if(is_cost(s)){ |
| | | cost_layer *layer = parse_cost(options, params); |
| | | net.types[count] = COST; |
| | | net.layers[count] = layer; |
| | | l = parse_cost(options, params); |
| | | }else if(is_detection(s)){ |
| | | detection_layer *layer = parse_detection(options, params); |
| | | net.types[count] = DETECTION; |
| | | net.layers[count] = layer; |
| | | l = parse_detection(options, params); |
| | | }else if(is_softmax(s)){ |
| | | softmax_layer *layer = parse_softmax(options, params); |
| | | net.types[count] = SOFTMAX; |
| | | net.layers[count] = layer; |
| | | l = parse_softmax(options, params); |
| | | }else if(is_maxpool(s)){ |
| | | maxpool_layer *layer = parse_maxpool(options, params); |
| | | net.types[count] = MAXPOOL; |
| | | net.layers[count] = layer; |
| | | }else if(is_normalization(s)){ |
| | | normalization_layer *layer = parse_normalization(options, params); |
| | | net.types[count] = NORMALIZATION; |
| | | net.layers[count] = layer; |
| | | l = parse_maxpool(options, params); |
| | | }else if(is_route(s)){ |
| | | l = parse_route(options, params, net); |
| | | }else if(is_dropout(s)){ |
| | | dropout_layer *layer = parse_dropout(options, params); |
| | | net.types[count] = DROPOUT; |
| | | net.layers[count] = layer; |
| | | l = parse_dropout(options, params); |
| | | l.output = net.layers[count-1].output; |
| | | l.delta = net.layers[count-1].delta; |
| | | #ifdef GPU |
| | | l.output_gpu = net.layers[count-1].output_gpu; |
| | | l.delta_gpu = net.layers[count-1].delta_gpu; |
| | | #endif |
| | | }else{ |
| | | fprintf(stderr, "Type not recognized: %s\n", s->type); |
| | | } |
| | | l.dontload = option_find_int_quiet(options, "dontload", 0); |
| | | net.layers[count] = l; |
| | | free_section(s); |
| | | n = n->next; |
| | | if(n){ |
| | | image im = get_network_image_layer(net, count); |
| | | params.h = im.h; |
| | | params.w = im.w; |
| | | params.c = im.c; |
| | | params.inputs = get_network_output_size_layer(net, count); |
| | | params.h = l.out_h; |
| | | params.w = l.out_w; |
| | | params.c = l.out_c; |
| | | params.inputs = l.outputs; |
| | | } |
| | | ++count; |
| | | } |
| | |
| | | return (strcmp(s->type, "[soft]")==0 |
| | | || strcmp(s->type, "[softmax]")==0); |
| | | } |
| | | int is_normalization(section *s) |
| | | int is_route(section *s) |
| | | { |
| | | return (strcmp(s->type, "[lrnorm]")==0 |
| | | || strcmp(s->type, "[localresponsenormalization]")==0); |
| | | return (strcmp(s->type, "[route]")==0); |
| | | } |
| | | |
| | | int read_option(char *s, list *options) |
| | |
| | | return sections; |
| | | } |
| | | |
| | | void print_convolutional_cfg(FILE *fp, convolutional_layer *l, network net, int count) |
| | | { |
| | | #ifdef GPU |
| | | if(gpu_index >= 0) pull_convolutional_layer(*l); |
| | | #endif |
| | | int i; |
| | | fprintf(fp, "[convolutional]\n"); |
| | | fprintf(fp, "filters=%d\n" |
| | | "size=%d\n" |
| | | "stride=%d\n" |
| | | "pad=%d\n" |
| | | "activation=%s\n", |
| | | l->n, l->size, l->stride, l->pad, |
| | | get_activation_string(l->activation)); |
| | | fprintf(fp, "biases="); |
| | | for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]); |
| | | fprintf(fp, "\n"); |
| | | fprintf(fp, "weights="); |
| | | for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]); |
| | | fprintf(fp, "\n\n"); |
| | | } |
| | | |
| | | void print_deconvolutional_cfg(FILE *fp, deconvolutional_layer *l, network net, int count) |
| | | { |
| | | #ifdef GPU |
| | | if(gpu_index >= 0) pull_deconvolutional_layer(*l); |
| | | #endif |
| | | int i; |
| | | fprintf(fp, "[deconvolutional]\n"); |
| | | fprintf(fp, "filters=%d\n" |
| | | "size=%d\n" |
| | | "stride=%d\n" |
| | | "activation=%s\n", |
| | | l->n, l->size, l->stride, |
| | | get_activation_string(l->activation)); |
| | | fprintf(fp, "biases="); |
| | | for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]); |
| | | fprintf(fp, "\n"); |
| | | fprintf(fp, "weights="); |
| | | for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]); |
| | | fprintf(fp, "\n\n"); |
| | | } |
| | | |
| | | void print_dropout_cfg(FILE *fp, dropout_layer *l, network net, int count) |
| | | { |
| | | fprintf(fp, "[dropout]\n"); |
| | | fprintf(fp, "probability=%g\n\n", l->probability); |
| | | } |
| | | |
| | | void print_connected_cfg(FILE *fp, connected_layer *l, network net, int count) |
| | | { |
| | | #ifdef GPU |
| | | if(gpu_index >= 0) pull_connected_layer(*l); |
| | | #endif |
| | | int i; |
| | | fprintf(fp, "[connected]\n"); |
| | | fprintf(fp, "output=%d\n" |
| | | "activation=%s\n", |
| | | l->outputs, |
| | | get_activation_string(l->activation)); |
| | | fprintf(fp, "biases="); |
| | | for(i = 0; i < l->outputs; ++i) fprintf(fp, "%g,", l->biases[i]); |
| | | fprintf(fp, "\n"); |
| | | fprintf(fp, "weights="); |
| | | for(i = 0; i < l->outputs*l->inputs; ++i) fprintf(fp, "%g,", l->weights[i]); |
| | | fprintf(fp, "\n\n"); |
| | | } |
| | | |
| | | void print_crop_cfg(FILE *fp, crop_layer *l, network net, int count) |
| | | { |
| | | fprintf(fp, "[crop]\n"); |
| | | fprintf(fp, "crop_height=%d\ncrop_width=%d\nflip=%d\n\n", l->crop_height, l->crop_width, l->flip); |
| | | } |
| | | |
| | | void print_maxpool_cfg(FILE *fp, maxpool_layer *l, network net, int count) |
| | | { |
| | | fprintf(fp, "[maxpool]\n"); |
| | | fprintf(fp, "size=%d\nstride=%d\n\n", l->size, l->stride); |
| | | } |
| | | |
| | | void print_normalization_cfg(FILE *fp, normalization_layer *l, network net, int count) |
| | | { |
| | | fprintf(fp, "[localresponsenormalization]\n"); |
| | | fprintf(fp, "size=%d\n" |
| | | "alpha=%g\n" |
| | | "beta=%g\n" |
| | | "kappa=%g\n\n", l->size, l->alpha, l->beta, l->kappa); |
| | | } |
| | | |
| | | void print_softmax_cfg(FILE *fp, softmax_layer *l, network net, int count) |
| | | { |
| | | fprintf(fp, "[softmax]\n"); |
| | | fprintf(fp, "\n"); |
| | | } |
| | | |
| | | void print_detection_cfg(FILE *fp, detection_layer *l, network net, int count) |
| | | { |
| | | fprintf(fp, "[detection]\n"); |
| | | fprintf(fp, "classes=%d\ncoords=%d\nrescore=%d\nnuisance=%d\n", l->classes, l->coords, l->rescore, l->nuisance); |
| | | fprintf(fp, "\n"); |
| | | } |
| | | |
| | | void print_cost_cfg(FILE *fp, cost_layer *l, network net, int count) |
| | | { |
| | | fprintf(fp, "[cost]\ntype=%s\n", get_cost_string(l->type)); |
| | | fprintf(fp, "\n"); |
| | | } |
| | | |
| | | void save_weights(network net, char *filename) |
| | | { |
| | | fprintf(stderr, "Saving weights to %s\n", filename); |
| | |
| | | |
| | | int i; |
| | | for(i = 0; i < net.n; ++i){ |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *) net.layers[i]; |
| | | layer l = net.layers[i]; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | pull_convolutional_layer(layer); |
| | | pull_convolutional_layer(l); |
| | | } |
| | | #endif |
| | | int num = layer.n*layer.c*layer.size*layer.size; |
| | | fwrite(layer.biases, sizeof(float), layer.n, fp); |
| | | fwrite(layer.filters, sizeof(float), num, fp); |
| | | int num = l.n*l.c*l.size*l.size; |
| | | fwrite(l.biases, sizeof(float), l.n, fp); |
| | | fwrite(l.filters, sizeof(float), num, fp); |
| | | } |
| | | if(net.types[i] == DECONVOLUTIONAL){ |
| | | deconvolutional_layer layer = *(deconvolutional_layer *) net.layers[i]; |
| | | if(l.type == DECONVOLUTIONAL){ |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | pull_deconvolutional_layer(layer); |
| | | pull_deconvolutional_layer(l); |
| | | } |
| | | #endif |
| | | int num = layer.n*layer.c*layer.size*layer.size; |
| | | fwrite(layer.biases, sizeof(float), layer.n, fp); |
| | | fwrite(layer.filters, sizeof(float), num, fp); |
| | | int num = l.n*l.c*l.size*l.size; |
| | | fwrite(l.biases, sizeof(float), l.n, fp); |
| | | fwrite(l.filters, sizeof(float), num, fp); |
| | | } |
| | | if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *) net.layers[i]; |
| | | if(l.type == CONNECTED){ |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | pull_connected_layer(layer); |
| | | pull_connected_layer(l); |
| | | } |
| | | #endif |
| | | fwrite(layer.biases, sizeof(float), layer.outputs, fp); |
| | | fwrite(layer.weights, sizeof(float), layer.outputs*layer.inputs, fp); |
| | | fwrite(l.biases, sizeof(float), l.outputs, fp); |
| | | fwrite(l.weights, sizeof(float), l.outputs*l.inputs, fp); |
| | | } |
| | | } |
| | | fclose(fp); |
| | |
| | | |
| | | void load_weights_upto(network *net, char *filename, int cutoff) |
| | | { |
| | | fprintf(stderr, "Loading weights from %s\n", filename); |
| | | fprintf(stderr, "Loading weights from %s...", filename); |
| | | fflush(stdout); |
| | | FILE *fp = fopen(filename, "r"); |
| | | if(!fp) file_error(filename); |
| | | |
| | |
| | | |
| | | int i; |
| | | for(i = 0; i < net->n && i < cutoff; ++i){ |
| | | if(net->types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *) net->layers[i]; |
| | | int num = layer.n*layer.c*layer.size*layer.size; |
| | | fread(layer.biases, sizeof(float), layer.n, fp); |
| | | fread(layer.filters, sizeof(float), num, fp); |
| | | layer l = net->layers[i]; |
| | | if (l.dontload) continue; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | int num = l.n*l.c*l.size*l.size; |
| | | fread(l.biases, sizeof(float), l.n, fp); |
| | | fread(l.filters, sizeof(float), num, fp); |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | push_convolutional_layer(layer); |
| | | push_convolutional_layer(l); |
| | | } |
| | | #endif |
| | | } |
| | | if(net->types[i] == DECONVOLUTIONAL){ |
| | | deconvolutional_layer layer = *(deconvolutional_layer *) net->layers[i]; |
| | | int num = layer.n*layer.c*layer.size*layer.size; |
| | | fread(layer.biases, sizeof(float), layer.n, fp); |
| | | fread(layer.filters, sizeof(float), num, fp); |
| | | if(l.type == DECONVOLUTIONAL){ |
| | | int num = l.n*l.c*l.size*l.size; |
| | | fread(l.biases, sizeof(float), l.n, fp); |
| | | fread(l.filters, sizeof(float), num, fp); |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | push_deconvolutional_layer(layer); |
| | | push_deconvolutional_layer(l); |
| | | } |
| | | #endif |
| | | } |
| | | if(net->types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *) net->layers[i]; |
| | | fread(layer.biases, sizeof(float), layer.outputs, fp); |
| | | fread(layer.weights, sizeof(float), layer.outputs*layer.inputs, fp); |
| | | if(l.type == CONNECTED){ |
| | | fread(l.biases, sizeof(float), l.outputs, fp); |
| | | fread(l.weights, sizeof(float), l.outputs*l.inputs, fp); |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | push_connected_layer(layer); |
| | | push_connected_layer(l); |
| | | } |
| | | #endif |
| | | } |
| | | } |
| | | fprintf(stderr, "Done!\n"); |
| | | fclose(fp); |
| | | } |
| | | |
| | |
| | | load_weights_upto(net, filename, net->n); |
| | | } |
| | | |
| | | void save_network(network net, char *filename) |
| | | { |
| | | FILE *fp = fopen(filename, "w"); |
| | | if(!fp) file_error(filename); |
| | | int i; |
| | | for(i = 0; i < net.n; ++i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL) |
| | | print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i], net, i); |
| | | else if(net.types[i] == DECONVOLUTIONAL) |
| | | print_deconvolutional_cfg(fp, (deconvolutional_layer *)net.layers[i], net, i); |
| | | else if(net.types[i] == CONNECTED) |
| | | print_connected_cfg(fp, (connected_layer *)net.layers[i], net, i); |
| | | else if(net.types[i] == CROP) |
| | | print_crop_cfg(fp, (crop_layer *)net.layers[i], net, i); |
| | | else if(net.types[i] == MAXPOOL) |
| | | print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], net, i); |
| | | else if(net.types[i] == DROPOUT) |
| | | print_dropout_cfg(fp, (dropout_layer *)net.layers[i], net, i); |
| | | else if(net.types[i] == NORMALIZATION) |
| | | print_normalization_cfg(fp, (normalization_layer *)net.layers[i], net, i); |
| | | else if(net.types[i] == SOFTMAX) |
| | | print_softmax_cfg(fp, (softmax_layer *)net.layers[i], net, i); |
| | | else if(net.types[i] == DETECTION) |
| | | print_detection_cfg(fp, (detection_layer *)net.layers[i], net, i); |
| | | else if(net.types[i] == COST) |
| | | print_cost_cfg(fp, (cost_layer *)net.layers[i], net, i); |
| | | } |
| | | fclose(fp); |
| | | } |
| | | |