| | |
| | | #include "opencv2/highgui/highgui_c.h" |
| | | #endif |
| | | |
| | | extern void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int top); |
| | | extern void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, int ext_output); |
| | | extern void run_voxel(int argc, char **argv); |
| | | extern void run_yolo(int argc, char **argv); |
| | | extern void run_detector(int argc, char **argv); |
| | |
| | | extern void run_art(int argc, char **argv); |
| | | extern void run_super(int argc, char **argv); |
| | | |
| | | void change_rate(char *filename, float scale, float add) |
| | | { |
| | | // Ready for some weird shit?? |
| | | FILE *fp = fopen(filename, "r+b"); |
| | | if(!fp) file_error(filename); |
| | | float rate = 0; |
| | | fread(&rate, sizeof(float), 1, fp); |
| | | printf("Scaling learning rate from %f to %f\n", rate, rate*scale+add); |
| | | rate = rate*scale + add; |
| | | fseek(fp, 0, SEEK_SET); |
| | | fwrite(&rate, sizeof(float), 1, fp); |
| | | fclose(fp); |
| | | } |
| | | |
| | | void average(int argc, char *argv[]) |
| | | { |
| | | char *cfgfile = argv[2]; |
| | |
| | | network net = parse_network_cfg(cfgfile); |
| | | network sum = parse_network_cfg(cfgfile); |
| | | |
| | | char *weightfile = argv[4]; |
| | | char *weightfile = argv[4]; |
| | | load_weights(&sum, weightfile); |
| | | |
| | | int i, j; |
| | | int n = argc - 5; |
| | | for(i = 0; i < n; ++i){ |
| | | weightfile = argv[i+5]; |
| | | weightfile = argv[i+5]; |
| | | load_weights(&net, weightfile); |
| | | for(j = 0; j < net.n; ++j){ |
| | | layer l = net.layers[j]; |
| | |
| | | if(l.type == CONVOLUTIONAL){ |
| | | int num = l.n*l.c*l.size*l.size; |
| | | axpy_cpu(l.n, 1, l.biases, 1, out.biases, 1); |
| | | axpy_cpu(num, 1, l.filters, 1, out.filters, 1); |
| | | axpy_cpu(num, 1, l.weights, 1, out.weights, 1); |
| | | if(l.batch_normalize){ |
| | | axpy_cpu(l.n, 1, l.scales, 1, out.scales, 1); |
| | | axpy_cpu(l.n, 1, l.rolling_mean, 1, out.rolling_mean, 1); |
| | | axpy_cpu(l.n, 1, l.rolling_variance, 1, out.rolling_variance, 1); |
| | | } |
| | | } |
| | | if(l.type == CONNECTED){ |
| | | axpy_cpu(l.outputs, 1, l.biases, 1, out.biases, 1); |
| | |
| | | if(l.type == CONVOLUTIONAL){ |
| | | int num = l.n*l.c*l.size*l.size; |
| | | scal_cpu(l.n, 1./n, l.biases, 1); |
| | | scal_cpu(num, 1./n, l.filters, 1); |
| | | scal_cpu(num, 1./n, l.weights, 1); |
| | | if(l.batch_normalize){ |
| | | scal_cpu(l.n, 1./n, l.scales, 1); |
| | | scal_cpu(l.n, 1./n, l.rolling_mean, 1); |
| | | scal_cpu(l.n, 1./n, l.rolling_variance, 1); |
| | | } |
| | | } |
| | | if(l.type == CONNECTED){ |
| | | scal_cpu(l.outputs, 1./n, l.biases, 1); |
| | |
| | | printf("Floating Point Operations: %.2f Bn\n", (float)ops/1000000000.); |
| | | } |
| | | |
| | | void oneoff(char *cfgfile, char *weightfile, char *outfile) |
| | | { |
| | | gpu_index = -1; |
| | | network net = parse_network_cfg(cfgfile); |
| | | int oldn = net.layers[net.n - 2].n; |
| | | int c = net.layers[net.n - 2].c; |
| | | net.layers[net.n - 2].n = 9372; |
| | | net.layers[net.n - 2].biases += 5; |
| | | net.layers[net.n - 2].weights += 5*c; |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | net.layers[net.n - 2].biases -= 5; |
| | | net.layers[net.n - 2].weights -= 5*c; |
| | | net.layers[net.n - 2].n = oldn; |
| | | printf("%d\n", oldn); |
| | | layer l = net.layers[net.n - 2]; |
| | | copy_cpu(l.n/3, l.biases, 1, l.biases + l.n/3, 1); |
| | | copy_cpu(l.n/3, l.biases, 1, l.biases + 2*l.n/3, 1); |
| | | copy_cpu(l.n/3*l.c, l.weights, 1, l.weights + l.n/3*l.c, 1); |
| | | copy_cpu(l.n/3*l.c, l.weights, 1, l.weights + 2*l.n/3*l.c, 1); |
| | | *net.seen = 0; |
| | | save_weights(net, outfile); |
| | | } |
| | | |
| | | void partial(char *cfgfile, char *weightfile, char *outfile, int max) |
| | | { |
| | | gpu_index = -1; |
| | |
| | | save_weights_upto(net, outfile, max); |
| | | } |
| | | |
| | | void stacked(char *cfgfile, char *weightfile, char *outfile) |
| | | { |
| | | gpu_index = -1; |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | net.seen = 0; |
| | | save_weights_double(net, outfile); |
| | | } |
| | | |
| | | #include "convolutional_layer.h" |
| | | void rescale_net(char *cfgfile, char *weightfile, char *outfile) |
| | | { |
| | |
| | | for(i = 0; i < net.n; ++i){ |
| | | layer l = net.layers[i]; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | rescale_filters(l, 2, -.5); |
| | | rescale_weights(l, 2, -.5); |
| | | break; |
| | | } |
| | | } |
| | |
| | | for(i = 0; i < net.n; ++i){ |
| | | layer l = net.layers[i]; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | rgbgr_filters(l); |
| | | rgbgr_weights(l); |
| | | break; |
| | | } |
| | | } |
| | |
| | | save_weights(net, outfile); |
| | | } |
| | | |
| | | void statistics_net(char *cfgfile, char *weightfile) |
| | | { |
| | | gpu_index = -1; |
| | | network net = parse_network_cfg(cfgfile); |
| | | if (weightfile) { |
| | | load_weights(&net, weightfile); |
| | | } |
| | | int i; |
| | | for (i = 0; i < net.n; ++i) { |
| | | layer l = net.layers[i]; |
| | | if (l.type == CONNECTED && l.batch_normalize) { |
| | | printf("Connected Layer %d\n", i); |
| | | statistics_connected_layer(l); |
| | | } |
| | | if (l.type == GRU && l.batch_normalize) { |
| | | printf("GRU Layer %d\n", i); |
| | | printf("Input Z\n"); |
| | | statistics_connected_layer(*l.input_z_layer); |
| | | printf("Input R\n"); |
| | | statistics_connected_layer(*l.input_r_layer); |
| | | printf("Input H\n"); |
| | | statistics_connected_layer(*l.input_h_layer); |
| | | printf("State Z\n"); |
| | | statistics_connected_layer(*l.state_z_layer); |
| | | printf("State R\n"); |
| | | statistics_connected_layer(*l.state_r_layer); |
| | | printf("State H\n"); |
| | | statistics_connected_layer(*l.state_h_layer); |
| | | } |
| | | printf("\n"); |
| | | } |
| | | } |
| | | |
| | | void denormalize_net(char *cfgfile, char *weightfile, char *outfile) |
| | | { |
| | | gpu_index = -1; |
| | |
| | | |
| | | int main(int argc, char **argv) |
| | | { |
| | | #ifdef _DEBUG |
| | | _CrtSetDbgFlag(_CRTDBG_ALLOC_MEM_DF | _CRTDBG_LEAK_CHECK_DF); |
| | | #endif |
| | | |
| | | int i; |
| | | for (i = 0; i < argc; ++i) { |
| | | if (!argv[i]) continue; |
| | | strip_args(argv[i]); |
| | | } |
| | | |
| | | //test_resize("data/bad.jpg"); |
| | | //test_box(); |
| | | //test_convolutional_layer(); |
| | |
| | | gpu_index = -1; |
| | | #else |
| | | if(gpu_index >= 0){ |
| | | cudaError_t status = cudaSetDevice(gpu_index); |
| | | check_error(status); |
| | | cuda_set_device(gpu_index); |
| | | check_error(cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync)); |
| | | } |
| | | #endif |
| | | |
| | |
| | | run_super(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "detector")){ |
| | | run_detector(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "detect")){ |
| | | float thresh = find_float_arg(argc, argv, "-thresh", .24); |
| | | int ext_output = find_arg(argc, argv, "-ext_output"); |
| | | char *filename = (argc > 4) ? argv[4]: 0; |
| | | test_detector("cfg/coco.data", argv[2], argv[3], filename, thresh, ext_output); |
| | | } else if (0 == strcmp(argv[1], "cifar")){ |
| | | run_cifar(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "go")){ |
| | |
| | | run_vid_rnn(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "coco")){ |
| | | run_coco(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "classify")){ |
| | | predict_classifier("cfg/imagenet1k.data", argv[2], argv[3], argv[4], 5); |
| | | } else if (0 == strcmp(argv[1], "classifier")){ |
| | | run_classifier(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "art")){ |
| | |
| | | run_captcha(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "nightmare")){ |
| | | run_nightmare(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "change")){ |
| | | change_rate(argv[2], atof(argv[3]), (argc > 4) ? atof(argv[4]) : 0); |
| | | } else if (0 == strcmp(argv[1], "rgbgr")){ |
| | | rgbgr_net(argv[2], argv[3], argv[4]); |
| | | } else if (0 == strcmp(argv[1], "reset")){ |
| | | reset_normalize_net(argv[2], argv[3], argv[4]); |
| | | } else if (0 == strcmp(argv[1], "denormalize")){ |
| | | denormalize_net(argv[2], argv[3], argv[4]); |
| | | } else if (0 == strcmp(argv[1], "statistics")){ |
| | | statistics_net(argv[2], argv[3]); |
| | | } else if (0 == strcmp(argv[1], "normalize")){ |
| | | normalize_net(argv[2], argv[3], argv[4]); |
| | | } else if (0 == strcmp(argv[1], "rescale")){ |
| | |
| | | } else if (0 == strcmp(argv[1], "ops")){ |
| | | operations(argv[2]); |
| | | } else if (0 == strcmp(argv[1], "speed")){ |
| | | speed(argv[2], (argc > 3) ? atoi(argv[3]) : 0); |
| | | speed(argv[2], (argc > 3 && argv[3]) ? atoi(argv[3]) : 0); |
| | | } else if (0 == strcmp(argv[1], "oneoff")){ |
| | | oneoff(argv[2], argv[3], argv[4]); |
| | | } else if (0 == strcmp(argv[1], "partial")){ |
| | | partial(argv[2], argv[3], argv[4], atoi(argv[5])); |
| | | } else if (0 == strcmp(argv[1], "average")){ |
| | | average(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "stacked")){ |
| | | stacked(argv[2], argv[3], argv[4]); |
| | | } else if (0 == strcmp(argv[1], "visualize")){ |
| | | visualize(argv[2], (argc > 3) ? argv[3] : 0); |
| | | } else if (0 == strcmp(argv[1], "imtest")){ |