| | |
| | | #include "utils.h" |
| | | #include "parser.h" |
| | | #include "box.h" |
| | | #include "demo.h" |
| | | |
| | | #ifdef OPENCV |
| | | #include "opencv2/highgui/highgui_c.h" |
| | |
| | | |
| | | int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90}; |
| | | |
| | | void draw_coco(image im, float *pred, int side, char *label) |
| | | { |
| | | int classes = 1; |
| | | int elems = 4+classes; |
| | | int j; |
| | | int r, c; |
| | | |
| | | for(r = 0; r < side; ++r){ |
| | | for(c = 0; c < side; ++c){ |
| | | j = (r*side + c) * elems; |
| | | int class = max_index(pred+j, classes); |
| | | if (pred[j+class] > 0.2){ |
| | | int width = pred[j+class]*5 + 1; |
| | | printf("%f %s\n", pred[j+class], "object"); //coco_classes[class-1]); |
| | | float red = get_color(0,class,classes); |
| | | float green = get_color(1,class,classes); |
| | | float blue = get_color(2,class,classes); |
| | | |
| | | j += classes; |
| | | |
| | | box predict = {pred[j+0], pred[j+1], pred[j+2], pred[j+3]}; |
| | | predict.x = (predict.x+c)/side; |
| | | predict.y = (predict.y+r)/side; |
| | | |
| | | draw_bbox(im, predict, width, red, green, blue); |
| | | } |
| | | } |
| | | } |
| | | show_image(im, label); |
| | | } |
| | | |
| | | void train_coco(char *cfgfile, char *weightfile) |
| | | { |
| | | //char *train_images = "/home/pjreddie/data/voc/test/train.txt"; |
| | | //char *train_images = "/home/pjreddie/data/coco/train.txt"; |
| | | char *train_images = "/home/pjreddie/data/voc/test/train.txt"; |
| | | char *train_images = "data/coco.trainval.txt"; |
| | | //char *train_images = "data/bags.train.list"; |
| | | char *backup_directory = "/home/pjreddie/backup/"; |
| | | srand(time(0)); |
| | | data_seed = time(0); |
| | | char *base = basecfg(cfgfile); |
| | | printf("%s\n", base); |
| | | float avg_loss = -1; |
| | |
| | | load_weights(&net, weightfile); |
| | | } |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 128; |
| | | int imgs = net.batch*net.subdivisions; |
| | | int i = *net.seen/imgs; |
| | | data train, buffer; |
| | | |
| | |
| | | |
| | | int side = l.side; |
| | | int classes = l.classes; |
| | | float jitter = l.jitter; |
| | | |
| | | list *plist = get_paths(train_images); |
| | | int N = plist->size; |
| | | //int N = plist->size; |
| | | char **paths = (char **)list_to_array(plist); |
| | | |
| | | load_args args = {0}; |
| | |
| | | args.n = imgs; |
| | | args.m = plist->size; |
| | | args.classes = classes; |
| | | args.jitter = jitter; |
| | | args.num_boxes = side; |
| | | args.d = &buffer; |
| | | args.type = REGION_DATA; |
| | | |
| | | args.angle = net.angle; |
| | | args.exposure = net.exposure; |
| | | args.saturation = net.saturation; |
| | | args.hue = net.hue; |
| | | |
| | | pthread_t load_thread = load_data_in_thread(args); |
| | | clock_t time; |
| | | while(i*imgs < N*120){ |
| | | //while(i*imgs < N*120){ |
| | | while(get_current_batch(net) < net.max_batches){ |
| | | i += 1; |
| | | time=clock(); |
| | | pthread_join(load_thread, 0); |
| | |
| | | |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | |
| | | /* |
| | | image im = float_to_image(net.w, net.h, 3, train.X.vals[113]); |
| | | image copy = copy_image(im); |
| | | draw_coco(copy, train.y.vals[113], 7, "truth"); |
| | | cvWaitKey(0); |
| | | free_image(copy); |
| | | */ |
| | | /* |
| | | image im = float_to_image(net.w, net.h, 3, train.X.vals[113]); |
| | | image copy = copy_image(im); |
| | | draw_coco(copy, train.y.vals[113], 7, "truth"); |
| | | cvWaitKey(0); |
| | | free_image(copy); |
| | | */ |
| | | |
| | | time=clock(); |
| | | float loss = train_network(net, train); |
| | | if (avg_loss < 0) avg_loss = loss; |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | |
| | | printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs); |
| | | if(i%1000==0){ |
| | | printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs); |
| | | if(i%1000==0 || (i < 1000 && i%100 == 0)){ |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); |
| | | save_weights(net, buff); |
| | | } |
| | | if(i%100==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s.backup", backup_directory, base); |
| | | save_weights(net, buff); |
| | | } |
| | | free_data(train); |
| | | } |
| | | char buff[256]; |
| | |
| | | save_weights(net, buff); |
| | | } |
| | | |
| | | void get_probs(float *predictions, int total, int classes, int inc, float **probs) |
| | | { |
| | | int i,j; |
| | | for (i = 0; i < total; ++i){ |
| | | int index = i*inc; |
| | | float scale = predictions[index]; |
| | | probs[i][0] = scale; |
| | | for(j = 0; j < classes; ++j){ |
| | | probs[i][j] = scale*predictions[index+j+1]; |
| | | } |
| | | } |
| | | } |
| | | |
| | | void get_boxes(float *predictions, int n, int num_boxes, int per_box, box *boxes) |
| | | { |
| | | int i,j; |
| | | for (i = 0; i < num_boxes*num_boxes; ++i){ |
| | | for(j = 0; j < n; ++j){ |
| | | int index = i*n+j; |
| | | int offset = index*per_box; |
| | | int row = i / num_boxes; |
| | | int col = i % num_boxes; |
| | | boxes[index].x = (predictions[offset + 0] + col) / num_boxes; |
| | | boxes[index].y = (predictions[offset + 1] + row) / num_boxes; |
| | | boxes[index].w = predictions[offset + 2]; |
| | | boxes[index].h = predictions[offset + 3]; |
| | | } |
| | | } |
| | | } |
| | | |
| | | void convert_cocos(float *predictions, int classes, int num_boxes, int num, int w, int h, float thresh, float **probs, box *boxes) |
| | | { |
| | | int i,j; |
| | | int per_box = 4+classes; |
| | | for (i = 0; i < num_boxes*num_boxes*num; ++i){ |
| | | int offset = i*per_box; |
| | | for(j = 0; j < classes; ++j){ |
| | | float prob = predictions[offset+j]; |
| | | probs[i][j] = (prob > thresh) ? prob : 0; |
| | | } |
| | | int row = i / num_boxes; |
| | | int col = i % num_boxes; |
| | | offset += classes; |
| | | boxes[i].x = (predictions[offset + 0] + col) / num_boxes; |
| | | boxes[i].y = (predictions[offset + 1] + row) / num_boxes; |
| | | boxes[i].w = predictions[offset + 2]; |
| | | boxes[i].h = predictions[offset + 3]; |
| | | } |
| | | } |
| | | |
| | | void print_cocos(FILE *fp, int image_id, box *boxes, float **probs, int num_boxes, int classes, int w, int h) |
| | | { |
| | | int i, j; |
| | | for(i = 0; i < num_boxes*num_boxes; ++i){ |
| | | for(i = 0; i < num_boxes; ++i){ |
| | | float xmin = boxes[i].x - boxes[i].w/2.; |
| | | float xmax = boxes[i].x + boxes[i].w/2.; |
| | | float ymin = boxes[i].y - boxes[i].h/2.; |
| | |
| | | return atoi(p+1); |
| | | } |
| | | |
| | | void validate_recall(char *cfgfile, char *weightfile) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | set_batch_network(&net, 1); |
| | | fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | srand(time(0)); |
| | | |
| | | char *val_images = "/home/pjreddie/data/voc/test/2007_test.txt"; |
| | | list *plist = get_paths(val_images); |
| | | char **paths = (char **)list_to_array(plist); |
| | | |
| | | layer l = net.layers[net.n - 1]; |
| | | |
| | | int num_boxes = l.side; |
| | | int num = l.n; |
| | | int classes = l.classes; |
| | | |
| | | int j; |
| | | |
| | | box *boxes = calloc(num_boxes*num_boxes*num, sizeof(box)); |
| | | float **probs = calloc(num_boxes*num_boxes*num, sizeof(float *)); |
| | | for(j = 0; j < num_boxes*num_boxes*num; ++j) probs[j] = calloc(classes+1, sizeof(float *)); |
| | | |
| | | int N = plist->size; |
| | | int i=0; |
| | | int k; |
| | | |
| | | float iou_thresh = .5; |
| | | float thresh = .1; |
| | | int total = 0; |
| | | int correct = 0; |
| | | float avg_iou = 0; |
| | | int nms = 1; |
| | | int proposals = 0; |
| | | int save = 1; |
| | | |
| | | for (i = 0; i < N; ++i) { |
| | | char *path = paths[i]; |
| | | image orig = load_image_color(path, 0, 0); |
| | | image resized = resize_image(orig, net.w, net.h); |
| | | |
| | | float *X = resized.data; |
| | | float *predictions = network_predict(net, X); |
| | | get_boxes(predictions+1+classes, num, num_boxes, 5+classes, boxes); |
| | | get_probs(predictions, num*num_boxes*num_boxes, classes, 5+classes, probs); |
| | | if (nms) do_nms(boxes, probs, num*num_boxes*num_boxes, (classes>0) ? classes : 1, iou_thresh); |
| | | |
| | | char *labelpath = find_replace(path, "images", "labels"); |
| | | labelpath = find_replace(labelpath, "JPEGImages", "labels"); |
| | | labelpath = find_replace(labelpath, ".jpg", ".txt"); |
| | | labelpath = find_replace(labelpath, ".JPEG", ".txt"); |
| | | |
| | | int num_labels = 0; |
| | | box_label *truth = read_boxes(labelpath, &num_labels); |
| | | for(k = 0; k < num_boxes*num_boxes*num; ++k){ |
| | | if(probs[k][0] > thresh){ |
| | | ++proposals; |
| | | if(save){ |
| | | char buff[256]; |
| | | sprintf(buff, "/data/extracted/nms_preds/%d", proposals); |
| | | int dx = (boxes[k].x - boxes[k].w/2) * orig.w; |
| | | int dy = (boxes[k].y - boxes[k].h/2) * orig.h; |
| | | int w = boxes[k].w * orig.w; |
| | | int h = boxes[k].h * orig.h; |
| | | image cropped = crop_image(orig, dx, dy, w, h); |
| | | image sized = resize_image(cropped, 224, 224); |
| | | #ifdef OPENCV |
| | | save_image_jpg(sized, buff); |
| | | #endif |
| | | free_image(sized); |
| | | free_image(cropped); |
| | | sprintf(buff, "/data/extracted/nms_pred_boxes/%d.txt", proposals); |
| | | char *im_id = basecfg(path); |
| | | FILE *fp = fopen(buff, "w"); |
| | | fprintf(fp, "%s %d %d %d %d\n", im_id, dx, dy, dx+w, dy+h); |
| | | fclose(fp); |
| | | free(im_id); |
| | | } |
| | | } |
| | | } |
| | | for (j = 0; j < num_labels; ++j) { |
| | | ++total; |
| | | box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h}; |
| | | float best_iou = 0; |
| | | for(k = 0; k < num_boxes*num_boxes*num; ++k){ |
| | | float iou = box_iou(boxes[k], t); |
| | | if(probs[k][0] > thresh && iou > best_iou){ |
| | | best_iou = iou; |
| | | } |
| | | } |
| | | avg_iou += best_iou; |
| | | if(best_iou > iou_thresh){ |
| | | ++correct; |
| | | } |
| | | } |
| | | free(truth); |
| | | free_image(orig); |
| | | free_image(resized); |
| | | fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total); |
| | | } |
| | | } |
| | | |
| | | void extract_boxes(char *cfgfile, char *weightfile) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | set_batch_network(&net, 1); |
| | | fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | srand(time(0)); |
| | | |
| | | char *val_images = "/home/pjreddie/data/voc/test/train.txt"; |
| | | list *plist = get_paths(val_images); |
| | | char **paths = (char **)list_to_array(plist); |
| | | |
| | | layer l = net.layers[net.n - 1]; |
| | | |
| | | int num_boxes = l.side; |
| | | int num = l.n; |
| | | int classes = l.classes; |
| | | |
| | | int j; |
| | | |
| | | box *boxes = calloc(num_boxes*num_boxes*num, sizeof(box)); |
| | | float **probs = calloc(num_boxes*num_boxes*num, sizeof(float *)); |
| | | for(j = 0; j < num_boxes*num_boxes*num; ++j) probs[j] = calloc(classes+1, sizeof(float *)); |
| | | |
| | | int N = plist->size; |
| | | int i=0; |
| | | int k; |
| | | |
| | | int count = 0; |
| | | float iou_thresh = .3; |
| | | |
| | | for (i = 0; i < N; ++i) { |
| | | fprintf(stderr, "%5d %5d\n", i, count); |
| | | char *path = paths[i]; |
| | | image orig = load_image_color(path, 0, 0); |
| | | image resized = resize_image(orig, net.w, net.h); |
| | | |
| | | float *X = resized.data; |
| | | float *predictions = network_predict(net, X); |
| | | get_boxes(predictions+1+classes, num, num_boxes, 5+classes, boxes); |
| | | get_probs(predictions, num*num_boxes*num_boxes, classes, 5+classes, probs); |
| | | |
| | | char *labelpath = find_replace(path, "images", "labels"); |
| | | labelpath = find_replace(labelpath, "JPEGImages", "labels"); |
| | | labelpath = find_replace(labelpath, ".jpg", ".txt"); |
| | | labelpath = find_replace(labelpath, ".JPEG", ".txt"); |
| | | |
| | | int num_labels = 0; |
| | | box_label *truth = read_boxes(labelpath, &num_labels); |
| | | FILE *label = stdin; |
| | | for(k = 0; k < num_boxes*num_boxes*num; ++k){ |
| | | int overlaps = 0; |
| | | for (j = 0; j < num_labels; ++j) { |
| | | box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h}; |
| | | float iou = box_iou(boxes[k], t); |
| | | if (iou > iou_thresh){ |
| | | if (!overlaps) { |
| | | char buff[256]; |
| | | sprintf(buff, "/data/extracted/labels/%d.txt", count); |
| | | label = fopen(buff, "w"); |
| | | overlaps = 1; |
| | | } |
| | | fprintf(label, "%d %f\n", truth[j].id, iou); |
| | | } |
| | | } |
| | | if (overlaps) { |
| | | char buff[256]; |
| | | sprintf(buff, "/data/extracted/imgs/%d", count++); |
| | | int dx = (boxes[k].x - boxes[k].w/2) * orig.w; |
| | | int dy = (boxes[k].y - boxes[k].h/2) * orig.h; |
| | | int w = boxes[k].w * orig.w; |
| | | int h = boxes[k].h * orig.h; |
| | | image cropped = crop_image(orig, dx, dy, w, h); |
| | | image sized = resize_image(cropped, 224, 224); |
| | | #ifdef OPENCV |
| | | save_image_jpg(sized, buff); |
| | | #endif |
| | | free_image(sized); |
| | | free_image(cropped); |
| | | fclose(label); |
| | | } |
| | | } |
| | | free(truth); |
| | | free_image(orig); |
| | | free_image(resized); |
| | | } |
| | | } |
| | | |
| | | void validate_coco(char *cfgfile, char *weightfile) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | |
| | | fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | srand(time(0)); |
| | | |
| | | char *base = "/home/pjreddie/backup/"; |
| | | char *base = "results/"; |
| | | list *plist = get_paths("data/coco_val_5k.list"); |
| | | //list *plist = get_paths("/home/pjreddie/data/people-art/test.txt"); |
| | | //list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | |
| | | int num_boxes = 9; |
| | | int num = 4; |
| | | int classes = 1; |
| | | layer l = net.layers[net.n-1]; |
| | | int classes = l.classes; |
| | | int side = l.side; |
| | | |
| | | int j; |
| | | char buff[1024]; |
| | |
| | | FILE *fp = fopen(buff, "w"); |
| | | fprintf(fp, "[\n"); |
| | | |
| | | box *boxes = calloc(num_boxes*num_boxes*num, sizeof(box)); |
| | | float **probs = calloc(num_boxes*num_boxes*num, sizeof(float *)); |
| | | for(j = 0; j < num_boxes*num_boxes*num; ++j) probs[j] = calloc(classes, sizeof(float *)); |
| | | box *boxes = calloc(side*side*l.n, sizeof(box)); |
| | | float **probs = calloc(side*side*l.n, sizeof(float *)); |
| | | for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *)); |
| | | |
| | | int m = plist->size; |
| | | int i=0; |
| | |
| | | int nms = 1; |
| | | float iou_thresh = .5; |
| | | |
| | | load_args args = {0}; |
| | | args.w = net.w; |
| | | args.h = net.h; |
| | | args.type = IMAGE_DATA; |
| | | |
| | | int nthreads = 8; |
| | | image *val = calloc(nthreads, sizeof(image)); |
| | | image *val_resized = calloc(nthreads, sizeof(image)); |
| | | image *buf = calloc(nthreads, sizeof(image)); |
| | | image *buf_resized = calloc(nthreads, sizeof(image)); |
| | | pthread_t *thr = calloc(nthreads, sizeof(pthread_t)); |
| | | |
| | | load_args args = {0}; |
| | | args.w = net.w; |
| | | args.h = net.h; |
| | | args.type = IMAGE_DATA; |
| | | |
| | | for(t = 0; t < nthreads; ++t){ |
| | | args.path = paths[i+t]; |
| | | args.im = &buf[t]; |
| | |
| | | char *path = paths[i+t-nthreads]; |
| | | int image_id = get_coco_image_id(path); |
| | | float *X = val_resized[t].data; |
| | | float *predictions = network_predict(net, X); |
| | | network_predict(net, X); |
| | | int w = val[t].w; |
| | | int h = val[t].h; |
| | | convert_cocos(predictions, classes, num_boxes, num, w, h, thresh, probs, boxes); |
| | | if (nms) do_nms(boxes, probs, num_boxes, classes, iou_thresh); |
| | | print_cocos(fp, image_id, boxes, probs, num_boxes, classes, w, h); |
| | | get_detection_boxes(l, w, h, thresh, probs, boxes, 0); |
| | | if (nms) do_nms_sort_v2(boxes, probs, side*side*l.n, classes, iou_thresh); |
| | | print_cocos(fp, image_id, boxes, probs, side*side*l.n, classes, w, h); |
| | | free_image(val[t]); |
| | | free_image(val_resized[t]); |
| | | } |
| | |
| | | fseek(fp, -2, SEEK_CUR); |
| | | fprintf(fp, "\n]\n"); |
| | | fclose(fp); |
| | | |
| | | fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start)); |
| | | } |
| | | |
| | | void test_coco(char *cfgfile, char *weightfile, char *filename) |
| | | void validate_coco_recall(char *cfgfile, char *weightfile) |
| | | { |
| | | |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | set_batch_network(&net, 1); |
| | | fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | srand(time(0)); |
| | | |
| | | char *base = "results/comp4_det_test_"; |
| | | list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | |
| | | layer l = net.layers[net.n-1]; |
| | | int classes = l.classes; |
| | | int side = l.side; |
| | | |
| | | int j, k; |
| | | FILE **fps = calloc(classes, sizeof(FILE *)); |
| | | for(j = 0; j < classes; ++j){ |
| | | char buff[1024]; |
| | | snprintf(buff, 1024, "%s%s.txt", base, coco_classes[j]); |
| | | fps[j] = fopen(buff, "w"); |
| | | } |
| | | box *boxes = calloc(side*side*l.n, sizeof(box)); |
| | | float **probs = calloc(side*side*l.n, sizeof(float *)); |
| | | for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *)); |
| | | |
| | | int m = plist->size; |
| | | int i=0; |
| | | |
| | | float thresh = .001; |
| | | int nms = 0; |
| | | float iou_thresh = .5; |
| | | float nms_thresh = .5; |
| | | |
| | | int total = 0; |
| | | int correct = 0; |
| | | int proposals = 0; |
| | | float avg_iou = 0; |
| | | |
| | | for(i = 0; i < m; ++i){ |
| | | char *path = paths[i]; |
| | | image orig = load_image_color(path, 0, 0); |
| | | image sized = resize_image(orig, net.w, net.h); |
| | | char *id = basecfg(path); |
| | | network_predict(net, sized.data); |
| | | get_detection_boxes(l, 1, 1, thresh, probs, boxes, 1); |
| | | if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms_thresh); |
| | | |
| | | char labelpath[4096]; |
| | | find_replace(path, "images", "labels", labelpath); |
| | | find_replace(labelpath, "JPEGImages", "labels", labelpath); |
| | | find_replace(labelpath, ".jpg", ".txt", labelpath); |
| | | find_replace(labelpath, ".JPEG", ".txt", labelpath); |
| | | |
| | | int num_labels = 0; |
| | | box_label *truth = read_boxes(labelpath, &num_labels); |
| | | for(k = 0; k < side*side*l.n; ++k){ |
| | | if(probs[k][0] > thresh){ |
| | | ++proposals; |
| | | } |
| | | } |
| | | for (j = 0; j < num_labels; ++j) { |
| | | ++total; |
| | | box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h}; |
| | | float best_iou = 0; |
| | | for(k = 0; k < side*side*l.n; ++k){ |
| | | float iou = box_iou(boxes[k], t); |
| | | if(probs[k][0] > thresh && iou > best_iou){ |
| | | best_iou = iou; |
| | | } |
| | | } |
| | | avg_iou += best_iou; |
| | | if(best_iou > iou_thresh){ |
| | | ++correct; |
| | | } |
| | | } |
| | | |
| | | fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total); |
| | | free(id); |
| | | free_image(orig); |
| | | free_image(sized); |
| | | } |
| | | } |
| | | |
| | | void test_coco(char *cfgfile, char *weightfile, char *filename, float thresh) |
| | | { |
| | | image **alphabet = load_alphabet(); |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | detection_layer l = net.layers[net.n-1]; |
| | | set_batch_network(&net, 1); |
| | | srand(2222222); |
| | | float nms = .4; |
| | | clock_t time; |
| | | char buff[256]; |
| | | char *input = buff; |
| | | int j; |
| | | box *boxes = calloc(l.side*l.side*l.n, sizeof(box)); |
| | | float **probs = calloc(l.side*l.side*l.n, sizeof(float *)); |
| | | for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *)); |
| | | while(1){ |
| | | if(filename){ |
| | | strncpy(input, filename, 256); |
| | |
| | | image sized = resize_image(im, net.w, net.h); |
| | | float *X = sized.data; |
| | | time=clock(); |
| | | float *predictions = network_predict(net, X); |
| | | network_predict(net, X); |
| | | printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); |
| | | draw_coco(im, predictions, 7, "predictions"); |
| | | get_detection_boxes(l, 1, 1, thresh, probs, boxes, 0); |
| | | if (nms) do_nms_sort_v2(boxes, probs, l.side*l.side*l.n, l.classes, nms); |
| | | draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, coco_classes, alphabet, 80); |
| | | save_image(im, "prediction"); |
| | | show_image(im, "predictions"); |
| | | free_image(im); |
| | | free_image(sized); |
| | | #ifdef OPENCV |
| | |
| | | |
| | | void run_coco(int argc, char **argv) |
| | | { |
| | | int dont_show = find_arg(argc, argv, "-dont_show"); |
| | | int http_stream_port = find_int_arg(argc, argv, "-http_port", -1); |
| | | char *out_filename = find_char_arg(argc, argv, "-out_filename", 0); |
| | | char *prefix = find_char_arg(argc, argv, "-prefix", 0); |
| | | float thresh = find_float_arg(argc, argv, "-thresh", .2); |
| | | float hier_thresh = find_float_arg(argc, argv, "-hier", .5); |
| | | int cam_index = find_int_arg(argc, argv, "-c", 0); |
| | | int frame_skip = find_int_arg(argc, argv, "-s", 0); |
| | | |
| | | if(argc < 4){ |
| | | fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); |
| | | return; |
| | |
| | | char *cfg = argv[3]; |
| | | char *weights = (argc > 4) ? argv[4] : 0; |
| | | char *filename = (argc > 5) ? argv[5]: 0; |
| | | if(0==strcmp(argv[2], "test")) test_coco(cfg, weights, filename); |
| | | if(0==strcmp(argv[2], "test")) test_coco(cfg, weights, filename, thresh); |
| | | else if(0==strcmp(argv[2], "train")) train_coco(cfg, weights); |
| | | else if(0==strcmp(argv[2], "extract")) extract_boxes(cfg, weights); |
| | | else if(0==strcmp(argv[2], "valid")) validate_recall(cfg, weights); |
| | | else if(0==strcmp(argv[2], "valid")) validate_coco(cfg, weights); |
| | | else if(0==strcmp(argv[2], "recall")) validate_coco_recall(cfg, weights); |
| | | else if(0==strcmp(argv[2], "demo")) demo(cfg, weights, thresh, hier_thresh, cam_index, filename, coco_classes, 80, frame_skip, |
| | | prefix, out_filename, http_stream_port, dont_show); |
| | | } |