| | |
| | | #include "connected_layer.h" |
| | | #include "batchnorm_layer.h" |
| | | #include "utils.h" |
| | | #include "mini_blas.h" |
| | | #include "cuda.h" |
| | | #include "blas.h" |
| | | #include "gemm.h" |
| | | |
| | | #include <math.h> |
| | | #include <stdio.h> |
| | | #include <stdlib.h> |
| | | #include <string.h> |
| | | |
| | | connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation, float learning_rate, float momentum, float decay) |
| | | connected_layer make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation, int batch_normalize) |
| | | { |
| | | int i; |
| | | connected_layer l = {0}; |
| | | l.type = CONNECTED; |
| | | |
| | | l.inputs = inputs; |
| | | l.outputs = outputs; |
| | | l.batch=batch; |
| | | l.batch_normalize = batch_normalize; |
| | | l.h = 1; |
| | | l.w = 1; |
| | | l.c = inputs; |
| | | l.out_h = 1; |
| | | l.out_w = 1; |
| | | l.out_c = outputs; |
| | | |
| | | l.output = calloc(batch*outputs, sizeof(float)); |
| | | l.delta = calloc(batch*outputs, sizeof(float)); |
| | | |
| | | l.weight_updates = calloc(inputs*outputs, sizeof(float)); |
| | | l.bias_updates = calloc(outputs, sizeof(float)); |
| | | |
| | | l.weights = calloc(outputs*inputs, sizeof(float)); |
| | | l.biases = calloc(outputs, sizeof(float)); |
| | | |
| | | //float scale = 1./sqrt(inputs); |
| | | float scale = sqrt(2./inputs); |
| | | for(i = 0; i < outputs*inputs; ++i){ |
| | | l.weights[i] = scale*rand_uniform(-1, 1); |
| | | } |
| | | |
| | | for(i = 0; i < outputs; ++i){ |
| | | l.biases[i] = 0; |
| | | } |
| | | |
| | | if(batch_normalize){ |
| | | l.scales = calloc(outputs, sizeof(float)); |
| | | l.scale_updates = calloc(outputs, sizeof(float)); |
| | | for(i = 0; i < outputs; ++i){ |
| | | l.scales[i] = 1; |
| | | } |
| | | |
| | | l.mean = calloc(outputs, sizeof(float)); |
| | | l.mean_delta = calloc(outputs, sizeof(float)); |
| | | l.variance = calloc(outputs, sizeof(float)); |
| | | l.variance_delta = calloc(outputs, sizeof(float)); |
| | | |
| | | l.rolling_mean = calloc(outputs, sizeof(float)); |
| | | l.rolling_variance = calloc(outputs, sizeof(float)); |
| | | |
| | | l.x = calloc(batch*outputs, sizeof(float)); |
| | | l.x_norm = calloc(batch*outputs, sizeof(float)); |
| | | } |
| | | |
| | | #ifdef GPU |
| | | l.weights_gpu = cuda_make_array(l.weights, outputs*inputs); |
| | | l.biases_gpu = cuda_make_array(l.biases, outputs); |
| | | |
| | | l.weight_updates_gpu = cuda_make_array(l.weight_updates, outputs*inputs); |
| | | l.bias_updates_gpu = cuda_make_array(l.bias_updates, outputs); |
| | | |
| | | l.output_gpu = cuda_make_array(l.output, outputs*batch); |
| | | l.delta_gpu = cuda_make_array(l.delta, outputs*batch); |
| | | if(batch_normalize){ |
| | | l.scales_gpu = cuda_make_array(l.scales, outputs); |
| | | l.scale_updates_gpu = cuda_make_array(l.scale_updates, outputs); |
| | | |
| | | l.mean_gpu = cuda_make_array(l.mean, outputs); |
| | | l.variance_gpu = cuda_make_array(l.variance, outputs); |
| | | |
| | | l.rolling_mean_gpu = cuda_make_array(l.mean, outputs); |
| | | l.rolling_variance_gpu = cuda_make_array(l.variance, outputs); |
| | | |
| | | l.mean_delta_gpu = cuda_make_array(l.mean, outputs); |
| | | l.variance_delta_gpu = cuda_make_array(l.variance, outputs); |
| | | |
| | | l.x_gpu = cuda_make_array(l.output, l.batch*outputs); |
| | | l.x_norm_gpu = cuda_make_array(l.output, l.batch*outputs); |
| | | } |
| | | #endif |
| | | l.activation = activation; |
| | | fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs); |
| | | int i; |
| | | connected_layer *layer = calloc(1, sizeof(connected_layer)); |
| | | |
| | | layer->learning_rate = learning_rate; |
| | | layer->momentum = momentum; |
| | | layer->decay = decay; |
| | | |
| | | layer->inputs = inputs; |
| | | layer->outputs = outputs; |
| | | layer->batch=batch; |
| | | |
| | | layer->output = calloc(batch*outputs, sizeof(float*)); |
| | | layer->delta = calloc(batch*outputs, sizeof(float*)); |
| | | |
| | | layer->weight_updates = calloc(inputs*outputs, sizeof(float)); |
| | | layer->weight_adapt = calloc(inputs*outputs, sizeof(float)); |
| | | layer->weight_momentum = calloc(inputs*outputs, sizeof(float)); |
| | | layer->weights = calloc(inputs*outputs, sizeof(float)); |
| | | float scale = 1./inputs; |
| | | //scale = .01; |
| | | for(i = 0; i < inputs*outputs; ++i) |
| | | layer->weights[i] = scale*(rand_uniform()-.5); |
| | | |
| | | layer->bias_updates = calloc(outputs, sizeof(float)); |
| | | layer->bias_adapt = calloc(outputs, sizeof(float)); |
| | | layer->bias_momentum = calloc(outputs, sizeof(float)); |
| | | layer->biases = calloc(outputs, sizeof(float)); |
| | | for(i = 0; i < outputs; ++i) |
| | | //layer->biases[i] = rand_normal()*scale + scale; |
| | | layer->biases[i] = 1; |
| | | |
| | | layer->activation = activation; |
| | | return layer; |
| | | return l; |
| | | } |
| | | |
| | | void update_connected_layer(connected_layer layer) |
| | | void update_connected_layer(connected_layer l, int batch, float learning_rate, float momentum, float decay) |
| | | { |
| | | int i; |
| | | for(i = 0; i < layer.outputs; ++i){ |
| | | layer.bias_momentum[i] = layer.learning_rate*(layer.bias_updates[i]) + layer.momentum*layer.bias_momentum[i]; |
| | | layer.biases[i] += layer.bias_momentum[i]; |
| | | axpy_cpu(l.outputs, learning_rate/batch, l.bias_updates, 1, l.biases, 1); |
| | | scal_cpu(l.outputs, momentum, l.bias_updates, 1); |
| | | |
| | | if(l.batch_normalize){ |
| | | axpy_cpu(l.outputs, learning_rate/batch, l.scale_updates, 1, l.scales, 1); |
| | | scal_cpu(l.outputs, momentum, l.scale_updates, 1); |
| | | } |
| | | for(i = 0; i < layer.outputs*layer.inputs; ++i){ |
| | | layer.weight_momentum[i] = layer.learning_rate*(layer.weight_updates[i] - layer.decay*layer.weights[i]) + layer.momentum*layer.weight_momentum[i]; |
| | | layer.weights[i] += layer.weight_momentum[i]; |
| | | } |
| | | memset(layer.bias_updates, 0, layer.outputs*sizeof(float)); |
| | | memset(layer.weight_updates, 0, layer.outputs*layer.inputs*sizeof(float)); |
| | | |
| | | axpy_cpu(l.inputs*l.outputs, -decay*batch, l.weights, 1, l.weight_updates, 1); |
| | | axpy_cpu(l.inputs*l.outputs, learning_rate/batch, l.weight_updates, 1, l.weights, 1); |
| | | scal_cpu(l.inputs*l.outputs, momentum, l.weight_updates, 1); |
| | | } |
| | | |
| | | void forward_connected_layer(connected_layer layer, float *input) |
| | | void forward_connected_layer(connected_layer l, network_state state) |
| | | { |
| | | int i; |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | memcpy(layer.output+i*layer.outputs, layer.biases, layer.outputs*sizeof(float)); |
| | | fill_cpu(l.outputs*l.batch, 0, l.output, 1); |
| | | int m = l.batch; |
| | | int k = l.inputs; |
| | | int n = l.outputs; |
| | | float *a = state.input; |
| | | float *b = l.weights; |
| | | float *c = l.output; |
| | | gemm(0,1,m,n,k,1,a,k,b,k,1,c,n); |
| | | if(l.batch_normalize){ |
| | | if(state.train){ |
| | | mean_cpu(l.output, l.batch, l.outputs, 1, l.mean); |
| | | variance_cpu(l.output, l.mean, l.batch, l.outputs, 1, l.variance); |
| | | |
| | | scal_cpu(l.outputs, .95, l.rolling_mean, 1); |
| | | axpy_cpu(l.outputs, .05, l.mean, 1, l.rolling_mean, 1); |
| | | scal_cpu(l.outputs, .95, l.rolling_variance, 1); |
| | | axpy_cpu(l.outputs, .05, l.variance, 1, l.rolling_variance, 1); |
| | | |
| | | copy_cpu(l.outputs*l.batch, l.output, 1, l.x, 1); |
| | | normalize_cpu(l.output, l.mean, l.variance, l.batch, l.outputs, 1); |
| | | copy_cpu(l.outputs*l.batch, l.output, 1, l.x_norm, 1); |
| | | } else { |
| | | normalize_cpu(l.output, l.rolling_mean, l.rolling_variance, l.batch, l.outputs, 1); |
| | | } |
| | | scale_bias(l.output, l.scales, l.batch, l.outputs, 1); |
| | | } |
| | | int m = layer.batch; |
| | | int k = layer.inputs; |
| | | int n = layer.outputs; |
| | | float *a = input; |
| | | float *b = layer.weights; |
| | | float *c = layer.output; |
| | | gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | activate_array(layer.output, layer.outputs*layer.batch, layer.activation); |
| | | for(i = 0; i < l.batch; ++i){ |
| | | axpy_cpu(l.outputs, 1, l.biases, 1, l.output + i*l.outputs, 1); |
| | | } |
| | | activate_array(l.output, l.outputs*l.batch, l.activation); |
| | | } |
| | | |
| | | void backward_connected_layer(connected_layer layer, float *input, float *delta) |
| | | void backward_connected_layer(connected_layer l, network_state state) |
| | | { |
| | | int i; |
| | | for(i = 0; i < layer.outputs*layer.batch; ++i){ |
| | | layer.delta[i] *= gradient(layer.output[i], layer.activation); |
| | | layer.bias_updates[i%layer.outputs] += layer.delta[i]; |
| | | gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta); |
| | | for(i = 0; i < l.batch; ++i){ |
| | | axpy_cpu(l.outputs, 1, l.delta + i*l.outputs, 1, l.bias_updates, 1); |
| | | } |
| | | int m = layer.inputs; |
| | | int k = layer.batch; |
| | | int n = layer.outputs; |
| | | float *a = input; |
| | | float *b = layer.delta; |
| | | float *c = layer.weight_updates; |
| | | if(l.batch_normalize){ |
| | | backward_scale_cpu(l.x_norm, l.delta, l.batch, l.outputs, 1, l.scale_updates); |
| | | |
| | | scale_bias(l.delta, l.scales, l.batch, l.outputs, 1); |
| | | |
| | | mean_delta_cpu(l.delta, l.variance, l.batch, l.outputs, 1, l.mean_delta); |
| | | variance_delta_cpu(l.x, l.delta, l.mean, l.variance, l.batch, l.outputs, 1, l.variance_delta); |
| | | normalize_delta_cpu(l.x, l.mean, l.variance, l.mean_delta, l.variance_delta, l.batch, l.outputs, 1, l.delta); |
| | | } |
| | | |
| | | int m = l.outputs; |
| | | int k = l.batch; |
| | | int n = l.inputs; |
| | | float *a = l.delta; |
| | | float *b = state.input; |
| | | float *c = l.weight_updates; |
| | | gemm(1,0,m,n,k,1,a,m,b,n,1,c,n); |
| | | |
| | | m = layer.batch; |
| | | k = layer.outputs; |
| | | n = layer.inputs; |
| | | m = l.batch; |
| | | k = l.outputs; |
| | | n = l.inputs; |
| | | |
| | | a = layer.delta; |
| | | b = layer.weights; |
| | | c = delta; |
| | | a = l.delta; |
| | | b = l.weights; |
| | | c = state.delta; |
| | | |
| | | if(c) gemm(0,1,m,n,k,1,a,k,b,k,0,c,n); |
| | | if(c) gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | } |
| | | |
| | | |
| | | void denormalize_connected_layer(layer l) |
| | | { |
| | | int i, j; |
| | | for(i = 0; i < l.outputs; ++i){ |
| | | float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .000001); |
| | | for(j = 0; j < l.inputs; ++j){ |
| | | l.weights[i*l.inputs + j] *= scale; |
| | | } |
| | | l.biases[i] -= l.rolling_mean[i] * scale; |
| | | l.scales[i] = 1; |
| | | l.rolling_mean[i] = 0; |
| | | l.rolling_variance[i] = 1; |
| | | } |
| | | } |
| | | |
| | | |
| | | void statistics_connected_layer(layer l) |
| | | { |
| | | if(l.batch_normalize){ |
| | | printf("Scales "); |
| | | print_statistics(l.scales, l.outputs); |
| | | printf("Rolling Mean "); |
| | | print_statistics(l.rolling_mean, l.outputs); |
| | | printf("Rolling Variance "); |
| | | print_statistics(l.rolling_variance, l.outputs); |
| | | } |
| | | printf("Biases "); |
| | | print_statistics(l.biases, l.outputs); |
| | | printf("Weights "); |
| | | print_statistics(l.weights, l.outputs); |
| | | } |
| | | |
| | | #ifdef GPU |
| | | |
| | | void pull_connected_layer(connected_layer l) |
| | | { |
| | | cuda_pull_array(l.weights_gpu, l.weights, l.inputs*l.outputs); |
| | | cuda_pull_array(l.biases_gpu, l.biases, l.outputs); |
| | | cuda_pull_array(l.weight_updates_gpu, l.weight_updates, l.inputs*l.outputs); |
| | | cuda_pull_array(l.bias_updates_gpu, l.bias_updates, l.outputs); |
| | | if (l.batch_normalize){ |
| | | cuda_pull_array(l.scales_gpu, l.scales, l.outputs); |
| | | cuda_pull_array(l.rolling_mean_gpu, l.rolling_mean, l.outputs); |
| | | cuda_pull_array(l.rolling_variance_gpu, l.rolling_variance, l.outputs); |
| | | } |
| | | } |
| | | |
| | | void push_connected_layer(connected_layer l) |
| | | { |
| | | cuda_push_array(l.weights_gpu, l.weights, l.inputs*l.outputs); |
| | | cuda_push_array(l.biases_gpu, l.biases, l.outputs); |
| | | cuda_push_array(l.weight_updates_gpu, l.weight_updates, l.inputs*l.outputs); |
| | | cuda_push_array(l.bias_updates_gpu, l.bias_updates, l.outputs); |
| | | if (l.batch_normalize){ |
| | | cuda_push_array(l.scales_gpu, l.scales, l.outputs); |
| | | cuda_push_array(l.rolling_mean_gpu, l.rolling_mean, l.outputs); |
| | | cuda_push_array(l.rolling_variance_gpu, l.rolling_variance, l.outputs); |
| | | } |
| | | } |
| | | |
| | | void update_connected_layer_gpu(connected_layer l, int batch, float learning_rate, float momentum, float decay) |
| | | { |
| | | axpy_ongpu(l.outputs, learning_rate/batch, l.bias_updates_gpu, 1, l.biases_gpu, 1); |
| | | scal_ongpu(l.outputs, momentum, l.bias_updates_gpu, 1); |
| | | |
| | | if(l.batch_normalize){ |
| | | axpy_ongpu(l.outputs, learning_rate/batch, l.scale_updates_gpu, 1, l.scales_gpu, 1); |
| | | scal_ongpu(l.outputs, momentum, l.scale_updates_gpu, 1); |
| | | } |
| | | |
| | | axpy_ongpu(l.inputs*l.outputs, -decay*batch, l.weights_gpu, 1, l.weight_updates_gpu, 1); |
| | | axpy_ongpu(l.inputs*l.outputs, learning_rate/batch, l.weight_updates_gpu, 1, l.weights_gpu, 1); |
| | | scal_ongpu(l.inputs*l.outputs, momentum, l.weight_updates_gpu, 1); |
| | | } |
| | | |
| | | void forward_connected_layer_gpu(connected_layer l, network_state state) |
| | | { |
| | | int i; |
| | | fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1); |
| | | |
| | | int m = l.batch; |
| | | int k = l.inputs; |
| | | int n = l.outputs; |
| | | float * a = state.input; |
| | | float * b = l.weights_gpu; |
| | | float * c = l.output_gpu; |
| | | gemm_ongpu(0,1,m,n,k,1,a,k,b,k,1,c,n); |
| | | if(l.batch_normalize){ |
| | | forward_batchnorm_layer_gpu(l, state); |
| | | } |
| | | for(i = 0; i < l.batch; ++i){ |
| | | axpy_ongpu(l.outputs, 1, l.biases_gpu, 1, l.output_gpu + i*l.outputs, 1); |
| | | } |
| | | activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation); |
| | | } |
| | | |
| | | void backward_connected_layer_gpu(connected_layer l, network_state state) |
| | | { |
| | | int i; |
| | | constrain_ongpu(l.outputs*l.batch, 1, l.delta_gpu, 1); |
| | | gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu); |
| | | for(i = 0; i < l.batch; ++i){ |
| | | axpy_ongpu(l.outputs, 1, l.delta_gpu + i*l.outputs, 1, l.bias_updates_gpu, 1); |
| | | } |
| | | |
| | | if(l.batch_normalize){ |
| | | backward_batchnorm_layer_gpu(l, state); |
| | | } |
| | | |
| | | int m = l.outputs; |
| | | int k = l.batch; |
| | | int n = l.inputs; |
| | | float * a = l.delta_gpu; |
| | | float * b = state.input; |
| | | float * c = l.weight_updates_gpu; |
| | | gemm_ongpu(1,0,m,n,k,1,a,m,b,n,1,c,n); |
| | | |
| | | m = l.batch; |
| | | k = l.outputs; |
| | | n = l.inputs; |
| | | |
| | | a = l.delta_gpu; |
| | | b = l.weights_gpu; |
| | | c = state.delta; |
| | | |
| | | if(c) gemm_ongpu(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | } |
| | | #endif |