| | |
| | | #include <time.h> |
| | | |
| | | #ifdef CUDNN |
| | | #pragma comment(lib, "cudnn.lib") |
| | | #pragma comment(lib, "cudnn.lib") |
| | | #endif |
| | | |
| | | #ifdef AI2 |
| | |
| | | { |
| | | |
| | | #ifdef CUDNN_HALF |
| | | // TRUE_HALF_CONFIG is only supported on architectures with true fp16 support (compute capability 5.3 and 6.0): |
| | | // TRUE_HALF_CONFIG is only supported on architectures with true fp16 support (compute capability 5.3 and 6.0): |
| | | // Tegra X1, Jetson TX1, DRIVE CX, DRIVE PX, Quadro GP100, Tesla P100 |
| | | // PSEUDO_HALF_CONFIG is required for Tensor Cores - our case! |
| | | const cudnnDataType_t data_type = CUDNN_DATA_HALF; |
| | |
| | | cudnnSetConvolutionMathType(l->convDesc, CUDNN_TENSOR_OP_MATH); |
| | | #endif |
| | | |
| | | // INT8_CONFIG, INT8_EXT_CONFIG, INT8x4_CONFIG and INT8x4_EXT_CONFIG are only supported |
| | | // INT8_CONFIG, INT8_EXT_CONFIG, INT8x4_CONFIG and INT8x4_EXT_CONFIG are only supported |
| | | // on architectures with DP4A support (compute capability 6.1 and later). |
| | | //cudnnDataType_t data_type = CUDNN_DATA_INT8; |
| | | |
| | |
| | | int forward_algo = CUDNN_CONVOLUTION_FWD_PREFER_FASTEST; |
| | | int backward_algo = CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST; |
| | | int backward_filter = CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST; |
| | | if (cudnn_preference == cudnn_smallest) |
| | | if (cudnn_preference == cudnn_smallest) |
| | | { |
| | | forward_algo = CUDNN_CONVOLUTION_FWD_NO_WORKSPACE; |
| | | backward_algo = CUDNN_CONVOLUTION_BWD_DATA_NO_WORKSPACE; |
| | |
| | | 0, |
| | | &l->bf_algo); |
| | | |
| | | if (data_type == CUDNN_DATA_HALF) |
| | | if (data_type == CUDNN_DATA_HALF) |
| | | { |
| | | // HALF-16 if(data_type == CUDNN_DATA_HALF) |
| | | l->fw_algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM; |
| | |
| | | if (l->bf_algo == CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED) bf = 2; |
| | | //printf("Tensor Cores - Backward-filter enabled: l->bf_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED \n"); |
| | | |
| | | if (fw == 2 && bd == 2 && bf == 2) printf("TF "); |
| | | else if (fw == 1 && bd == 1 && bf == 1) printf("TH "); |
| | | //if (fw == 2 && bd == 2 && bf == 2) printf("TF "); |
| | | //else if (fw == 1 && bd == 1 && bf == 1) printf("TH "); |
| | | } |
| | | } |
| | | #endif |
| | |
| | | l.x_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n); |
| | | l.x_norm_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n); |
| | | } |
| | | #ifdef CUDNN |
| | | #ifdef CUDNN |
| | | cudnnCreateTensorDescriptor(&l.normDstTensorDesc); |
| | | cudnnCreateTensorDescriptor(&l.normDstTensorDescF16); |
| | | cudnnCreateTensorDescriptor(&l.normTensorDesc); |
| | |
| | | l->workspace_size = get_workspace_size(*l); |
| | | |
| | | #ifdef CUDNN |
| | | // check for excessive memory consumption |
| | | // check for excessive memory consumption |
| | | size_t free_byte; |
| | | size_t total_byte; |
| | | check_error(cudaMemGetInfo(&free_byte, &total_byte)); |
| | |
| | | } |
| | | } |
| | | |
| | | void gemm_nn_custom(int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | float *B, int ldb, |
| | | float *C, int ldc) |
| | | { |
| | | int i, j, k; |
| | | for (i = 0; i < M; ++i) { |
| | | for (k = 0; k < K; ++k) { |
| | | register float A_PART = ALPHA*A[i*lda + k]; |
| | | //printf("\n weight = %f \n", A_PART); |
| | | for (j = 0; j < N; ++j) { |
| | | C[i*ldc + j] += A_PART*B[k*ldb + j]; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | |
| | | void get_mean_array(float *src, size_t size, size_t filters, float *mean_arr) { |
| | | size_t i, counter; |
| | | counter = 0; |
| | | for (i = 0; i < size; i += size / filters) { |
| | | mean_arr[counter++] = fabs(src[i]); |
| | | } |
| | | } |
| | | |
| | | /* |
| | | void float_to_bit(float *src, unsigned char *dst, size_t size) { |
| | | |
| | | size_t dst_size = size / 8 + 1; |
| | | memset(dst, 0, dst_size); |
| | | size_t i, dst_i, dst_shift; |
| | | for (i = 0; i < size; ++i) { |
| | | if (src[i] > 0) set_bit(dst, i); |
| | | } |
| | | } |
| | | */ |
| | | |
| | | void bit_to_float(unsigned char *src, float *dst, size_t size, size_t filters, float *mean_arr) { |
| | | memset(dst, 0, size *sizeof(float)); |
| | | size_t i, src_i, src_shift; |
| | | |
| | | for (i = 0; i < size; ++i) { |
| | | float mean_val = 1; |
| | | if(mean_arr != NULL) mean_val = fabs(mean_arr[i / (size / filters)]); |
| | | if(get_bit(src, i)) dst[i] = mean_val; |
| | | else dst[i] = -mean_val; |
| | | } |
| | | } |
| | | |
| | | void binary_transpose_align_weights(convolutional_layer *l, size_t ldb_align) |
| | | { |
| | | int m = l->n; |
| | | int k = l->size*l->size*l->c; |
| | | size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8; |
| | | |
| | | binarize_weights(l->weights, m, k, l->binary_weights); |
| | | |
| | | size_t align_weights_size = new_ldb * m; |
| | | size_t align_bit_weights_size = align_weights_size / 8;// +1; |
| | | float *align_weights = calloc(align_weights_size, sizeof(float)); |
| | | l->align_bit_weights = calloc(align_bit_weights_size, sizeof(char)); |
| | | |
| | | size_t i, j; |
| | | // align A without transpose |
| | | for (i = 0; i < m; ++i) { |
| | | for (j = 0; j < k; ++j) { |
| | | align_weights[i*new_ldb + j] = l->binary_weights[i*k + j]; |
| | | } |
| | | } |
| | | float_to_bit(align_weights, l->align_bit_weights, align_weights_size); |
| | | |
| | | l->mean_arr = calloc(l->n, sizeof(float)); |
| | | get_mean_array(align_weights, align_weights_size, l->n, l->mean_arr); |
| | | |
| | | free(align_weights); |
| | | } |
| | | |
| | | |
| | | void forward_convolutional_layer(convolutional_layer l, network_state state) |
| | | { |
| | | int out_h = convolutional_out_height(l); |
| | |
| | | fill_cpu(l.outputs*l.batch, 0, l.output, 1); |
| | | |
| | | if(l.xnor){ |
| | | binarize_weights(l.weights, l.n, l.c*l.size*l.size, l.binary_weights); |
| | | if (!l.align_bit_weights) { |
| | | binarize_weights(l.weights, l.n, l.c*l.size*l.size, l.binary_weights); |
| | | //printf("\n binarize_weights l.align_bit_weights = %p \n", l.align_bit_weights); |
| | | } |
| | | swap_binary(&l); |
| | | binarize_cpu(state.input, l.c*l.h*l.w*l.batch, l.binary_input); |
| | | state.input = l.binary_input; |
| | |
| | | int k = l.size*l.size*l.c; |
| | | int n = out_h*out_w; |
| | | |
| | | |
| | | float *a = l.weights; |
| | | float *b = state.workspace; |
| | | float *c = l.output; |
| | | |
| | | static int u = 0; |
| | | u++; |
| | | |
| | | for(i = 0; i < l.batch; ++i){ |
| | | im2col_cpu(state.input, l.c, l.h, l.w, |
| | | im2col_cpu(state.input, l.c, l.h, l.w, |
| | | l.size, l.stride, l.pad, b); |
| | | gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | //gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | //gemm_nn_custom(m, n, k, 1, a, k, b, n, c, n); |
| | | if (l.xnor) { |
| | | size_t output_size = l.outputs; |
| | | //float *count_output = calloc(output_size, sizeof(float)); |
| | | //size_t bit_output_size = output_size / 8 + 1; |
| | | //char *bit_output = calloc(bit_output_size, sizeof(char)); |
| | | |
| | | size_t intput_size = n * k; // (out_h*out_w) X (l.size*l.size*l.c) : after im2col() |
| | | size_t bit_input_size = intput_size / 8 + 1; |
| | | //char *bit_input = calloc(bit_input_size, sizeof(char)); |
| | | |
| | | size_t weights_size = k * m; //l.size*l.size*l.c*l.n; |
| | | size_t bit_weights_size = weights_size / 8 + 1; |
| | | //char *bit_weights = calloc(bit_weights_size, sizeof(char)); |
| | | //float *mean_arr = calloc(l.n, sizeof(float)); |
| | | |
| | | // test: float->bit->float |
| | | //get_mean_array(l.weights, weights_size, l.n, mean_arr); |
| | | //float_to_bit(l.weights, bit_weights, weights_size); |
| | | //memset(l.weights, 0, weights_size * sizeof(float)); |
| | | //bit_to_float(bit_weights, l.weights, weights_size, l.n, mean_arr); // just for test float->bit->float |
| | | |
| | | //float_to_bit(b, bit_input, intput_size); |
| | | //memset(b, 0, intput_size * sizeof(float)); |
| | | //bit_to_float(bit_input, b, intput_size, 1, NULL); // just for test float->bit->float |
| | | |
| | | // transpose B from NxK to KxN (x-axis (ldb = l.size*l.size*l.c) - should be multiple of 8 bits) |
| | | { |
| | | size_t ldb_align = 256;// 8; |
| | | if (k > 4096)ldb_align = 4096; |
| | | |
| | | size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8; |
| | | size_t t_intput_size = new_ldb * n; |
| | | size_t t_bit_input_size = t_intput_size / 8;// +1; |
| | | float *t_input = calloc(t_intput_size, sizeof(float)); |
| | | char *t_bit_input = calloc(t_bit_input_size, sizeof(char)); |
| | | |
| | | //printf("\n bit_input_size = %d, n = %d, k = %d, ldb = %d \n", bit_input_size, n, k, n); |
| | | //printf("\n t_bit_input_size = %d, k = %d, n = %d, new_ldb = %d \n", t_bit_input_size, k, n, new_ldb); |
| | | |
| | | |
| | | //printf("\n align_weights_size = %d, k = %d, m = %d, lda = %d \n", align_weights_size, k, m, k); |
| | | //printf("\n align_bit_weights_size = %d, k = %d, m = %d, new_lda = %d \n", align_bit_weights_size, k, m, new_ldb); |
| | | |
| | | |
| | | // transpose and align B |
| | | int i, j; |
| | | for (i = 0; i < n; ++i) { |
| | | for (j = 0; j < k; ++j) { |
| | | t_input[i*new_ldb + j] = b[j*n + i]; |
| | | } |
| | | } |
| | | float_to_bit(t_input, t_bit_input, t_intput_size); |
| | | |
| | | if (!l.align_bit_weights) |
| | | { |
| | | size_t align_weights_size = new_ldb * m; |
| | | size_t align_bit_weights_size = align_weights_size / 8;// +1; |
| | | float *align_weights = calloc(align_weights_size, sizeof(float)); |
| | | l.align_bit_weights = calloc(align_bit_weights_size, sizeof(char)); |
| | | |
| | | // align A without transpose |
| | | for (i = 0; i < m; ++i) { |
| | | for (j = 0; j < k; ++j) { |
| | | align_weights[i*new_ldb + j] = a[i*k + j]; |
| | | } |
| | | } |
| | | float_to_bit(align_weights, l.align_bit_weights, align_weights_size); |
| | | |
| | | l.mean_arr = calloc(l.n, sizeof(float)); |
| | | get_mean_array(align_weights, align_weights_size, l.n, l.mean_arr); |
| | | |
| | | free(align_weights); |
| | | } |
| | | |
| | | gemm_nn_custom_bin_mean_transposed(m, n, k, 1, l.align_bit_weights, new_ldb, t_bit_input, new_ldb, c, n, l.mean_arr); |
| | | |
| | | //gemm_nn_custom_bin_mean_transposed(m, n, k, 1, bit_weights, k, t_bit_input, new_ldb, c, n, mean_arr); |
| | | |
| | | free(t_input); |
| | | free(t_bit_input); |
| | | |
| | | //free(align_bit_weights); |
| | | } |
| | | |
| | | // for bit_input: (k * n) |
| | | //if (u == 8) gemm_nn_custom_bin_mean(m, n, k, 1, bit_weights, k, bit_input, n, c, n, mean_arr); // last xnor layer |
| | | //else gemm_nn_custom_bin_mean(m, n, k, 1, bit_weights, k, bit_input, n, c, n, NULL); |
| | | |
| | | //gemm_nn_custom_bin_mean(m, n, k, 1, bit_weights, k, bit_input, n, c, n, mean_arr); |
| | | |
| | | //printf("\n u = %d \n", u); |
| | | |
| | | //gemm_nn_custom(m, n, k, 1, a, k, b, n, c, n); |
| | | |
| | | //int j; |
| | | //if (u != 8) for (j = 0; j < l.n; ++j) l.biases[j] = l.biases[j] / (mean_arr[j]*2); |
| | | |
| | | //free(count_output); |
| | | //free(bit_input); |
| | | //free(bit_weights); |
| | | //free(mean_arr); |
| | | } |
| | | else { |
| | | gemm(0, 0, m, n, k, 1, a, k, b, n, 1, c, n); |
| | | // bit-count to float |
| | | } |
| | | c += n*m; |
| | | state.input += l.c*l.h*l.w; |
| | | } |
| | |
| | | |
| | | float *im = state.input+i*l.c*l.h*l.w; |
| | | |
| | | im2col_cpu(im, l.c, l.h, l.w, |
| | | im2col_cpu(im, l.c, l.h, l.w, |
| | | l.size, l.stride, l.pad, b); |
| | | gemm(0,1,m,n,k,1,a,k,b,k,1,c,n); |
| | | |