| | |
| | | #include "network.h" |
| | | #include "detection_layer.h" |
| | | #include "cost_layer.h" |
| | | #include "utils.h" |
| | | #include "parser.h" |
| | | |
| | | |
| | | char *class_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"}; |
| | | #define AMNT 3 |
| | | void draw_detection(image im, float *box, int side) |
| | | |
| | | void draw_detection(image im, float *box, int side, char *label) |
| | | { |
| | | int classes = 20; |
| | | int elems = 4+classes; |
| | |
| | | for(r = 0; r < side; ++r){ |
| | | for(c = 0; c < side; ++c){ |
| | | j = (r*side + c) * elems; |
| | | //printf("%d\n", j); |
| | | //printf("Prob: %f\n", box[j]); |
| | | int class = max_index(box+j, classes); |
| | | if(box[j+class] > .02 || 1){ |
| | | //int z; |
| | | //for(z = 0; z < classes; ++z) printf("%f %s\n", box[j+z], class_names[z]); |
| | | if(box[j+class] > .2){ |
| | | printf("%f %s\n", box[j+class], class_names[class]); |
| | | float red = get_color(0,class,classes); |
| | | float green = get_color(1,class,classes); |
| | | float blue = get_color(2,class,classes); |
| | | |
| | | j += classes; |
| | | int d = im.w/side; |
| | | int y = r*d+box[j]*d; |
| | | int x = c*d+box[j+1]*d; |
| | | int h = box[j+2]*im.h; |
| | | int w = box[j+3]*im.w; |
| | | draw_box(im, x-w/2, y-h/2, x+w/2, y+h/2,red,green,blue); |
| | | float x = box[j+0]; |
| | | float y = box[j+1]; |
| | | x = (x+c)/side; |
| | | y = (y+r)/side; |
| | | float w = box[j+2]; //*maxwidth; |
| | | float h = box[j+3]; //*maxheight; |
| | | h = h*h; |
| | | w = w*w; |
| | | |
| | | int left = (x-w/2)*im.w; |
| | | int right = (x+w/2)*im.w; |
| | | int top = (y-h/2)*im.h; |
| | | int bot = (y+h/2)*im.h; |
| | | draw_box(im, left, top, right, bot, red, green, blue); |
| | | draw_box(im, left+1, top+1, right+1, bot+1, red, green, blue); |
| | | draw_box(im, left-1, top-1, right-1, bot-1, red, green, blue); |
| | | } |
| | | } |
| | | } |
| | | //printf("Done\n"); |
| | | show_image(im, "box"); |
| | | cvWaitKey(0); |
| | | show_image(im, label); |
| | | } |
| | | |
| | | void train_detection(char *cfgfile, char *weightfile) |
| | | { |
| | | srand(time(0)); |
| | | data_seed = time(0); |
| | | int imgnet = 0; |
| | | char *base = basecfg(cfgfile); |
| | | printf("%s\n", base); |
| | | float avg_loss = 1; |
| | | float avg_loss = -1; |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | detection_layer layer = get_network_detection_layer(net); |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 128; |
| | | srand(time(0)); |
| | | //srand(23410); |
| | | int i = net.seen/imgs; |
| | | list *plist = get_paths("/home/pjreddie/data/voc/train.txt"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | printf("%d\n", plist->size); |
| | | data train, buffer; |
| | | int im_dim = 512; |
| | | int jitter = 64; |
| | | int classes = 20; |
| | | int background = 1; |
| | | pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, background, &buffer); |
| | | |
| | | int classes = layer.classes; |
| | | int background = (layer.background || layer.objectness); |
| | | int side = sqrt(get_detection_layer_locations(layer)); |
| | | |
| | | char **paths; |
| | | list *plist; |
| | | if (imgnet){ |
| | | plist = get_paths("/home/pjreddie/data/imagenet/det.train.list"); |
| | | }else{ |
| | | //plist = get_paths("/home/pjreddie/data/voc/no_2012_val.txt"); |
| | | //plist = get_paths("/home/pjreddie/data/voc/no_2007_test.txt"); |
| | | //plist = get_paths("/home/pjreddie/data/voc/val_2012.txt"); |
| | | plist = get_paths("/home/pjreddie/data/voc/no_2007_test.txt"); |
| | | //plist = get_paths("/home/pjreddie/data/coco/trainval.txt"); |
| | | //plist = get_paths("/home/pjreddie/data/voc/all2007-2012.txt"); |
| | | } |
| | | paths = (char **)list_to_array(plist); |
| | | pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer); |
| | | clock_t time; |
| | | while(1){ |
| | | i += 1; |
| | | time=clock(); |
| | | pthread_join(load_thread, 0); |
| | | train = buffer; |
| | | load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, background, &buffer); |
| | | load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer); |
| | | |
| | | /* |
| | | image im = float_to_image(im_dim - jitter, im_dim-jitter, 3, train.X.vals[0]); |
| | | draw_detection(im, train.y.vals[0], 7); |
| | | show_image(im, "truth"); |
| | | /* |
| | | image im = float_to_image(net.w, net.h, 3, train.X.vals[114]); |
| | | image copy = copy_image(im); |
| | | draw_detection(copy, train.y.vals[114], 7, "truth"); |
| | | cvWaitKey(0); |
| | | */ |
| | | free_image(copy); |
| | | */ |
| | | |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | | float loss = train_network(net, train); |
| | | net.seen += imgs; |
| | | if (avg_loss < 0) avg_loss = loss; |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs); |
| | | if(i%100==0){ |
| | | if(i == 100){ |
| | | net.learning_rate *= 10; |
| | | } |
| | | if(i%1000==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i); |
| | | save_weights(net, buff); |
| | |
| | | } |
| | | } |
| | | |
| | | void predict_detections(network net, data d, float threshold, int offset, int classes, int objectness, int background, int num_boxes, int per_box) |
| | | { |
| | | matrix pred = network_predict_data(net, d); |
| | | int j, k, class; |
| | | for(j = 0; j < pred.rows; ++j){ |
| | | for(k = 0; k < pred.cols; k += per_box){ |
| | | float scale = 1.; |
| | | int index = k/per_box; |
| | | int row = index / num_boxes; |
| | | int col = index % num_boxes; |
| | | if (objectness) scale = 1.-pred.vals[j][k]; |
| | | for (class = 0; class < classes; ++class){ |
| | | int ci = k+classes+(background || objectness); |
| | | float x = (pred.vals[j][ci + 0] + col)/num_boxes; |
| | | float y = (pred.vals[j][ci + 1] + row)/num_boxes; |
| | | float w = pred.vals[j][ci + 2]; // distance_from_edge(row, num_boxes); |
| | | float h = pred.vals[j][ci + 3]; // distance_from_edge(col, num_boxes); |
| | | w = pow(w, 2); |
| | | h = pow(h, 2); |
| | | float prob = scale*pred.vals[j][k+class+(background || objectness)]; |
| | | if(prob < threshold) continue; |
| | | printf("%d %d %f %f %f %f %f\n", offset + j, class, prob, x, y, w, h); |
| | | } |
| | | } |
| | | } |
| | | free_matrix(pred); |
| | | } |
| | | |
| | | void validate_detection(char *cfgfile, char *weightfile) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | detection_layer layer = get_network_detection_layer(net); |
| | | fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | srand(time(0)); |
| | | |
| | | list *plist = get_paths("/home/pjreddie/data/voc/val.txt"); |
| | | //list *plist = get_paths("/home/pjreddie/data/voc/train.txt"); |
| | | list *plist = get_paths("/home/pjreddie/data/voc/test.txt"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | int im_size = 448; |
| | | int classes = 20; |
| | | int background = 1; |
| | | int num_output = 7*7*(4+classes+background); |
| | | |
| | | int classes = layer.classes; |
| | | int objectness = layer.objectness; |
| | | int background = layer.background; |
| | | int num_boxes = sqrt(get_detection_layer_locations(layer)); |
| | | |
| | | int per_box = 4+classes+(background || objectness); |
| | | int num_output = num_boxes*num_boxes*per_box; |
| | | |
| | | int m = plist->size; |
| | | int i = 0; |
| | | int splits = 100; |
| | | int num = (i+1)*m/splits - i*m/splits; |
| | | |
| | | fprintf(stderr, "%d\n", m); |
| | | data val, buffer; |
| | | pthread_t load_thread = load_data_thread(paths, num, 0, 0, num_output, im_size, im_size, &buffer); |
| | | clock_t time; |
| | | for(i = 1; i <= splits; ++i){ |
| | | time=clock(); |
| | | pthread_join(load_thread, 0); |
| | | val = buffer; |
| | | int nthreads = 4; |
| | | int t; |
| | | data *val = calloc(nthreads, sizeof(data)); |
| | | data *buf = calloc(nthreads, sizeof(data)); |
| | | pthread_t *thr = calloc(nthreads, sizeof(data)); |
| | | |
| | | num = (i+1)*m/splits - i*m/splits; |
| | | char **part = paths+(i*m/splits); |
| | | if(i != splits) load_thread = load_data_thread(part, num, 0, 0, num_output, im_size, im_size, &buffer); |
| | | time_t start = time(0); |
| | | |
| | | fprintf(stderr, "%d: Loaded: %lf seconds\n", i, sec(clock()-time)); |
| | | matrix pred = network_predict_data(net, val); |
| | | int j, k, class; |
| | | for(j = 0; j < pred.rows; ++j){ |
| | | for(k = 0; k < pred.cols; k += classes+4+background){ |
| | | for(class = 0; class < classes; ++class){ |
| | | int index = (k)/(classes+4+background); |
| | | int r = index/7; |
| | | int c = index%7; |
| | | int ci = k+classes+background; |
| | | float y = (r + pred.vals[j][ci + 0])/7.; |
| | | float x = (c + pred.vals[j][ci + 1])/7.; |
| | | float h = pred.vals[j][ci + 2]; |
| | | float w = pred.vals[j][ci + 3]; |
| | | printf("%d %d %f %f %f %f %f\n", (i-1)*m/splits + j, class, pred.vals[j][k+class+background], y, x, h, w); |
| | | } |
| | | } |
| | | for(t = 0; t < nthreads; ++t){ |
| | | int num = (i+1+t)*m/splits - (i+t)*m/splits; |
| | | char **part = paths+((i+t)*m/splits); |
| | | thr[t] = load_data_thread(part, num, 0, 0, num_output, net.w, net.h, &(buf[t])); |
| | | } |
| | | |
| | | for(i = nthreads; i <= splits; i += nthreads){ |
| | | for(t = 0; t < nthreads; ++t){ |
| | | pthread_join(thr[t], 0); |
| | | val[t] = buf[t]; |
| | | } |
| | | for(t = 0; t < nthreads && i < splits; ++t){ |
| | | int num = (i+1+t)*m/splits - (i+t)*m/splits; |
| | | char **part = paths+((i+t)*m/splits); |
| | | thr[t] = load_data_thread(part, num, 0, 0, num_output, net.w, net.h, &(buf[t])); |
| | | } |
| | | |
| | | time=clock(); |
| | | free_data(val); |
| | | fprintf(stderr, "%d\n", i); |
| | | for(t = 0; t < nthreads; ++t){ |
| | | predict_detections(net, val[t], .001, (i-nthreads+t)*m/splits, classes, objectness, background, num_boxes, per_box); |
| | | free_data(val[t]); |
| | | } |
| | | } |
| | | fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start)); |
| | | } |
| | | |
| | | void test_detection(char *cfgfile, char *weightfile) |
| | |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | detection_layer layer = get_network_detection_layer(net); |
| | | if (!layer.joint) fprintf(stderr, "Detection layer should use joint prediction to draw correctly.\n"); |
| | | int im_size = 448; |
| | | set_batch_network(&net, 1); |
| | | srand(2222222); |
| | |
| | | while(1){ |
| | | fgets(filename, 256, stdin); |
| | | strtok(filename, "\n"); |
| | | image im = load_image_color(filename, im_size, im_size); |
| | | translate_image(im, -128); |
| | | scale_image(im, 1/128.); |
| | | image im = load_image_color(filename,0,0); |
| | | image sized = resize_image(im, im_size, im_size); |
| | | printf("%d %d %d\n", im.h, im.w, im.c); |
| | | float *X = im.data; |
| | | float *X = sized.data; |
| | | time=clock(); |
| | | float *predictions = network_predict(net, X); |
| | | printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time)); |
| | | draw_detection(im, predictions, 7); |
| | | draw_detection(im, predictions, 7, "predictions"); |
| | | free_image(im); |
| | | free_image(sized); |
| | | #ifdef OPENCV |
| | | cvWaitKey(0); |
| | | #endif |
| | | } |
| | | } |
| | | |