| | |
| | | #include "image.h" |
| | | #include "data.h" |
| | | #include "utils.h" |
| | | #include "params.h" |
| | | |
| | | #include "crop_layer.h" |
| | | #include "connected_layer.h" |
| | |
| | | #include "detection_layer.h" |
| | | #include "maxpool_layer.h" |
| | | #include "cost_layer.h" |
| | | #include "normalization_layer.h" |
| | | #include "softmax_layer.h" |
| | | #include "dropout_layer.h" |
| | | #include "route_layer.h" |
| | | |
| | | char *get_layer_string(LAYER_TYPE a) |
| | | { |
| | |
| | | return "softmax"; |
| | | case DETECTION: |
| | | return "detection"; |
| | | case NORMALIZATION: |
| | | return "normalization"; |
| | | case DROPOUT: |
| | | return "dropout"; |
| | | case CROP: |
| | | return "crop"; |
| | | case COST: |
| | | return "cost"; |
| | | case ROUTE: |
| | | return "route"; |
| | | default: |
| | | break; |
| | | } |
| | |
| | | |
| | | network make_network(int n) |
| | | { |
| | | network net; |
| | | network net = {0}; |
| | | net.n = n; |
| | | net.layers = calloc(net.n, sizeof(void *)); |
| | | net.types = calloc(net.n, sizeof(LAYER_TYPE)); |
| | | net.outputs = 0; |
| | | net.output = 0; |
| | | net.seen = 0; |
| | | net.batch = 0; |
| | | net.inputs = 0; |
| | | net.h = net.w = net.c = 0; |
| | | net.layers = calloc(net.n, sizeof(layer)); |
| | | #ifdef GPU |
| | | net.input_gpu = calloc(1, sizeof(float *)); |
| | | net.truth_gpu = calloc(1, sizeof(float *)); |
| | |
| | | { |
| | | int i; |
| | | for(i = 0; i < net.n; ++i){ |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | forward_convolutional_layer(*(convolutional_layer *)net.layers[i], state); |
| | | layer l = net.layers[i]; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | forward_convolutional_layer(l, state); |
| | | } else if(l.type == DECONVOLUTIONAL){ |
| | | forward_deconvolutional_layer(l, state); |
| | | } else if(l.type == DETECTION){ |
| | | forward_detection_layer(l, state); |
| | | } else if(l.type == CONNECTED){ |
| | | forward_connected_layer(l, state); |
| | | } else if(l.type == CROP){ |
| | | forward_crop_layer(l, state); |
| | | } else if(l.type == COST){ |
| | | forward_cost_layer(l, state); |
| | | } else if(l.type == SOFTMAX){ |
| | | forward_softmax_layer(l, state); |
| | | } else if(l.type == MAXPOOL){ |
| | | forward_maxpool_layer(l, state); |
| | | } else if(l.type == DROPOUT){ |
| | | forward_dropout_layer(l, state); |
| | | } else if(l.type == ROUTE){ |
| | | forward_route_layer(l, net); |
| | | } |
| | | else if(net.types[i] == DECONVOLUTIONAL){ |
| | | forward_deconvolutional_layer(*(deconvolutional_layer *)net.layers[i], state); |
| | | } |
| | | else if(net.types[i] == DETECTION){ |
| | | forward_detection_layer(*(detection_layer *)net.layers[i], state); |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | forward_connected_layer(*(connected_layer *)net.layers[i], state); |
| | | } |
| | | else if(net.types[i] == CROP){ |
| | | forward_crop_layer(*(crop_layer *)net.layers[i], state); |
| | | } |
| | | else if(net.types[i] == COST){ |
| | | forward_cost_layer(*(cost_layer *)net.layers[i], state); |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | forward_softmax_layer(*(softmax_layer *)net.layers[i], state); |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | forward_maxpool_layer(*(maxpool_layer *)net.layers[i], state); |
| | | } |
| | | else if(net.types[i] == NORMALIZATION){ |
| | | forward_normalization_layer(*(normalization_layer *)net.layers[i], state); |
| | | } |
| | | else if(net.types[i] == DROPOUT){ |
| | | forward_dropout_layer(*(dropout_layer *)net.layers[i], state); |
| | | } |
| | | state.input = get_network_output_layer(net, i); |
| | | state.input = l.output; |
| | | } |
| | | } |
| | | |
| | | void update_network(network net) |
| | | { |
| | | int i; |
| | | int update_batch = net.batch*net.subdivisions; |
| | | for(i = 0; i < net.n; ++i){ |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | update_convolutional_layer(layer, net.learning_rate, net.momentum, net.decay); |
| | | } |
| | | else if(net.types[i] == DECONVOLUTIONAL){ |
| | | deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i]; |
| | | update_deconvolutional_layer(layer, net.learning_rate, net.momentum, net.decay); |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | update_connected_layer(layer, net.learning_rate, net.momentum, net.decay); |
| | | layer l = net.layers[i]; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | update_convolutional_layer(l, update_batch, net.learning_rate, net.momentum, net.decay); |
| | | } else if(l.type == DECONVOLUTIONAL){ |
| | | update_deconvolutional_layer(l, net.learning_rate, net.momentum, net.decay); |
| | | } else if(l.type == CONNECTED){ |
| | | update_connected_layer(l, update_batch, net.learning_rate, net.momentum, net.decay); |
| | | } |
| | | } |
| | | } |
| | | |
| | | float *get_network_output_layer(network net, int i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | return ((convolutional_layer *)net.layers[i]) -> output; |
| | | } else if(net.types[i] == DECONVOLUTIONAL){ |
| | | return ((deconvolutional_layer *)net.layers[i]) -> output; |
| | | } else if(net.types[i] == MAXPOOL){ |
| | | return ((maxpool_layer *)net.layers[i]) -> output; |
| | | } else if(net.types[i] == DETECTION){ |
| | | return ((detection_layer *)net.layers[i]) -> output; |
| | | } else if(net.types[i] == SOFTMAX){ |
| | | return ((softmax_layer *)net.layers[i]) -> output; |
| | | } else if(net.types[i] == DROPOUT){ |
| | | return get_network_output_layer(net, i-1); |
| | | } else if(net.types[i] == CONNECTED){ |
| | | return ((connected_layer *)net.layers[i]) -> output; |
| | | } else if(net.types[i] == CROP){ |
| | | return ((crop_layer *)net.layers[i]) -> output; |
| | | } else if(net.types[i] == NORMALIZATION){ |
| | | return ((normalization_layer *)net.layers[i]) -> output; |
| | | } |
| | | return 0; |
| | | } |
| | | |
| | | float *get_network_output(network net) |
| | | { |
| | | int i; |
| | | for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break; |
| | | return get_network_output_layer(net, i); |
| | | } |
| | | |
| | | float *get_network_delta_layer(network net, int i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | return layer.delta; |
| | | } else if(net.types[i] == DECONVOLUTIONAL){ |
| | | deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i]; |
| | | return layer.delta; |
| | | } else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | return layer.delta; |
| | | } else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | return layer.delta; |
| | | } else if(net.types[i] == DETECTION){ |
| | | detection_layer layer = *(detection_layer *)net.layers[i]; |
| | | return layer.delta; |
| | | } else if(net.types[i] == DROPOUT){ |
| | | if(i == 0) return 0; |
| | | return get_network_delta_layer(net, i-1); |
| | | } else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | return layer.delta; |
| | | } |
| | | return 0; |
| | | for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break; |
| | | return net.layers[i].output; |
| | | } |
| | | |
| | | float get_network_cost(network net) |
| | | { |
| | | if(net.types[net.n-1] == COST){ |
| | | return ((cost_layer *)net.layers[net.n-1])->output[0]; |
| | | if(net.layers[net.n-1].type == COST){ |
| | | return net.layers[net.n-1].output[0]; |
| | | } |
| | | if(net.layers[net.n-1].type == DETECTION){ |
| | | return net.layers[net.n-1].cost[0]; |
| | | } |
| | | return 0; |
| | | } |
| | | |
| | | float *get_network_delta(network net) |
| | | { |
| | | return get_network_delta_layer(net, net.n-1); |
| | | } |
| | | |
| | | float calculate_error_network(network net, float *truth) |
| | | { |
| | | float sum = 0; |
| | | float *delta = get_network_delta(net); |
| | | float *out = get_network_output(net); |
| | | int i; |
| | | for(i = 0; i < get_network_output_size(net)*net.batch; ++i){ |
| | | //if(i %get_network_output_size(net) == 0) printf("\n"); |
| | | //printf("%5.2f %5.2f, ", out[i], truth[i]); |
| | | //if(i == get_network_output_size(net)) printf("\n"); |
| | | delta[i] = truth[i] - out[i]; |
| | | //printf("%.10f, ", out[i]); |
| | | sum += delta[i]*delta[i]; |
| | | } |
| | | //printf("\n"); |
| | | return sum; |
| | | } |
| | | |
| | | int get_predicted_class_network(network net) |
| | | { |
| | | float *out = get_network_output(net); |
| | |
| | | state.input = original_input; |
| | | state.delta = 0; |
| | | }else{ |
| | | state.input = get_network_output_layer(net, i-1); |
| | | state.delta = get_network_delta_layer(net, i-1); |
| | | layer prev = net.layers[i-1]; |
| | | state.input = prev.output; |
| | | state.delta = prev.delta; |
| | | } |
| | | |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | backward_convolutional_layer(layer, state); |
| | | } else if(net.types[i] == DECONVOLUTIONAL){ |
| | | deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i]; |
| | | backward_deconvolutional_layer(layer, state); |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | if(i != 0) backward_maxpool_layer(layer, state); |
| | | } |
| | | else if(net.types[i] == DROPOUT){ |
| | | dropout_layer layer = *(dropout_layer *)net.layers[i]; |
| | | backward_dropout_layer(layer, state); |
| | | } |
| | | else if(net.types[i] == DETECTION){ |
| | | detection_layer layer = *(detection_layer *)net.layers[i]; |
| | | backward_detection_layer(layer, state); |
| | | } |
| | | else if(net.types[i] == NORMALIZATION){ |
| | | normalization_layer layer = *(normalization_layer *)net.layers[i]; |
| | | if(i != 0) backward_normalization_layer(layer, state); |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | if(i != 0) backward_softmax_layer(layer, state); |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | backward_connected_layer(layer, state); |
| | | } |
| | | else if(net.types[i] == COST){ |
| | | cost_layer layer = *(cost_layer *)net.layers[i]; |
| | | backward_cost_layer(layer, state); |
| | | layer l = net.layers[i]; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | backward_convolutional_layer(l, state); |
| | | } else if(l.type == DECONVOLUTIONAL){ |
| | | backward_deconvolutional_layer(l, state); |
| | | } else if(l.type == MAXPOOL){ |
| | | if(i != 0) backward_maxpool_layer(l, state); |
| | | } else if(l.type == DROPOUT){ |
| | | backward_dropout_layer(l, state); |
| | | } else if(l.type == DETECTION){ |
| | | backward_detection_layer(l, state); |
| | | } else if(l.type == SOFTMAX){ |
| | | if(i != 0) backward_softmax_layer(l, state); |
| | | } else if(l.type == CONNECTED){ |
| | | backward_connected_layer(l, state); |
| | | } else if(l.type == COST){ |
| | | backward_cost_layer(l, state); |
| | | } else if(l.type == ROUTE){ |
| | | backward_route_layer(l, net); |
| | | } |
| | | } |
| | | } |
| | |
| | | forward_network(net, state); |
| | | backward_network(net, state); |
| | | float error = get_network_cost(net); |
| | | update_network(net); |
| | | if((net.seen/net.batch)%net.subdivisions == 0) update_network(net); |
| | | return error; |
| | | } |
| | | |
| | |
| | | int i; |
| | | float sum = 0; |
| | | for(i = 0; i < n; ++i){ |
| | | net.seen += batch; |
| | | get_random_batch(d, batch, X, y); |
| | | float err = train_network_datum(net, X, y); |
| | | sum += err; |
| | |
| | | float sum = 0; |
| | | for(i = 0; i < n; ++i){ |
| | | get_next_batch(d, batch, i*batch, X, y); |
| | | net.seen += batch; |
| | | float err = train_network_datum(net, X, y); |
| | | sum += err; |
| | | } |
| | |
| | | net->batch = b; |
| | | int i; |
| | | for(i = 0; i < net->n; ++i){ |
| | | if(net->types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer *layer = (convolutional_layer *)net->layers[i]; |
| | | layer->batch = b; |
| | | }else if(net->types[i] == DECONVOLUTIONAL){ |
| | | deconvolutional_layer *layer = (deconvolutional_layer *)net->layers[i]; |
| | | layer->batch = b; |
| | | } |
| | | else if(net->types[i] == MAXPOOL){ |
| | | maxpool_layer *layer = (maxpool_layer *)net->layers[i]; |
| | | layer->batch = b; |
| | | } |
| | | else if(net->types[i] == CONNECTED){ |
| | | connected_layer *layer = (connected_layer *)net->layers[i]; |
| | | layer->batch = b; |
| | | } else if(net->types[i] == DROPOUT){ |
| | | dropout_layer *layer = (dropout_layer *) net->layers[i]; |
| | | layer->batch = b; |
| | | } else if(net->types[i] == DETECTION){ |
| | | detection_layer *layer = (detection_layer *) net->layers[i]; |
| | | layer->batch = b; |
| | | } |
| | | else if(net->types[i] == SOFTMAX){ |
| | | softmax_layer *layer = (softmax_layer *)net->layers[i]; |
| | | layer->batch = b; |
| | | } |
| | | else if(net->types[i] == COST){ |
| | | cost_layer *layer = (cost_layer *)net->layers[i]; |
| | | layer->batch = b; |
| | | } |
| | | else if(net->types[i] == CROP){ |
| | | crop_layer *layer = (crop_layer *)net->layers[i]; |
| | | layer->batch = b; |
| | | } |
| | | net->layers[i].batch = b; |
| | | } |
| | | } |
| | | |
| | | |
| | | int get_network_input_size_layer(network net, int i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | return layer.h*layer.w*layer.c; |
| | | } |
| | | if(net.types[i] == DECONVOLUTIONAL){ |
| | | deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i]; |
| | | return layer.h*layer.w*layer.c; |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | return layer.h*layer.w*layer.c; |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | return layer.inputs; |
| | | } else if(net.types[i] == DROPOUT){ |
| | | dropout_layer layer = *(dropout_layer *) net.layers[i]; |
| | | return layer.inputs; |
| | | } else if(net.types[i] == DETECTION){ |
| | | detection_layer layer = *(detection_layer *) net.layers[i]; |
| | | return layer.inputs; |
| | | } else if(net.types[i] == CROP){ |
| | | crop_layer layer = *(crop_layer *) net.layers[i]; |
| | | return layer.c*layer.h*layer.w; |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | return layer.inputs; |
| | | } |
| | | fprintf(stderr, "Can't find input size\n"); |
| | | return 0; |
| | | } |
| | | |
| | | int get_network_output_size_layer(network net, int i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | image output = get_convolutional_image(layer); |
| | | return output.h*output.w*output.c; |
| | | } |
| | | else if(net.types[i] == DECONVOLUTIONAL){ |
| | | deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i]; |
| | | image output = get_deconvolutional_image(layer); |
| | | return output.h*output.w*output.c; |
| | | } |
| | | else if(net.types[i] == DETECTION){ |
| | | detection_layer layer = *(detection_layer *)net.layers[i]; |
| | | return get_detection_layer_output_size(layer); |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | image output = get_maxpool_image(layer); |
| | | return output.h*output.w*output.c; |
| | | } |
| | | else if(net.types[i] == CROP){ |
| | | crop_layer layer = *(crop_layer *) net.layers[i]; |
| | | return layer.c*layer.crop_height*layer.crop_width; |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | return layer.outputs; |
| | | } |
| | | else if(net.types[i] == DROPOUT){ |
| | | dropout_layer layer = *(dropout_layer *) net.layers[i]; |
| | | return layer.inputs; |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | return layer.inputs; |
| | | } |
| | | fprintf(stderr, "Can't find output size\n"); |
| | | return 0; |
| | | } |
| | | |
| | | /* |
| | | int resize_network(network net, int h, int w, int c) |
| | | { |
| | | fprintf(stderr, "Might be broken, careful!!"); |
| | | int i; |
| | | for (i = 0; i < net.n; ++i){ |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | |
| | | }else if(net.types[i] == DROPOUT){ |
| | | dropout_layer *layer = (dropout_layer *)net.layers[i]; |
| | | resize_dropout_layer(layer, h*w*c); |
| | | }else if(net.types[i] == NORMALIZATION){ |
| | | normalization_layer *layer = (normalization_layer *)net.layers[i]; |
| | | resize_normalization_layer(layer, h, w); |
| | | image output = get_normalization_image(*layer); |
| | | h = output.h; |
| | | w = output.w; |
| | | c = output.c; |
| | | }else{ |
| | | error("Cannot resize this type of layer"); |
| | | } |
| | | } |
| | | return 0; |
| | | } |
| | | */ |
| | | |
| | | int get_network_output_size(network net) |
| | | { |
| | | int i; |
| | | for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break; |
| | | return get_network_output_size_layer(net, i); |
| | | for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break; |
| | | return net.layers[i].outputs; |
| | | } |
| | | |
| | | int get_network_input_size(network net) |
| | | { |
| | | return get_network_input_size_layer(net, 0); |
| | | return net.layers[0].inputs; |
| | | } |
| | | |
| | | detection_layer get_network_detection_layer(network net) |
| | | { |
| | | int i; |
| | | for(i = 0; i < net.n; ++i){ |
| | | if(net.layers[i].type == DETECTION){ |
| | | return net.layers[i]; |
| | | } |
| | | } |
| | | fprintf(stderr, "Detection layer not found!!\n"); |
| | | detection_layer l = {0}; |
| | | return l; |
| | | } |
| | | |
| | | image get_network_image_layer(network net, int i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | return get_convolutional_image(layer); |
| | | layer l = net.layers[i]; |
| | | if (l.out_w && l.out_h && l.out_c){ |
| | | return float_to_image(l.out_w, l.out_h, l.out_c, l.output); |
| | | } |
| | | else if(net.types[i] == DECONVOLUTIONAL){ |
| | | deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i]; |
| | | return get_deconvolutional_image(layer); |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | return get_maxpool_image(layer); |
| | | } |
| | | else if(net.types[i] == NORMALIZATION){ |
| | | normalization_layer layer = *(normalization_layer *)net.layers[i]; |
| | | return get_normalization_image(layer); |
| | | } |
| | | else if(net.types[i] == DROPOUT){ |
| | | return get_network_image_layer(net, i-1); |
| | | } |
| | | else if(net.types[i] == CROP){ |
| | | crop_layer layer = *(crop_layer *)net.layers[i]; |
| | | return get_crop_image(layer); |
| | | } |
| | | return make_empty_image(0,0,0); |
| | | image def = {0}; |
| | | return def; |
| | | } |
| | | |
| | | image get_network_image(network net) |
| | |
| | | image m = get_network_image_layer(net, i); |
| | | if(m.h != 0) return m; |
| | | } |
| | | return make_empty_image(0,0,0); |
| | | image def = {0}; |
| | | return def; |
| | | } |
| | | |
| | | void visualize_network(network net) |
| | |
| | | image *prev = 0; |
| | | int i; |
| | | char buff[256]; |
| | | //show_image(get_network_image_layer(net, 0), "Crop"); |
| | | for(i = 0; i < net.n; ++i){ |
| | | sprintf(buff, "Layer %d", i); |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | prev = visualize_convolutional_layer(layer, buff, prev); |
| | | } |
| | | if(net.types[i] == NORMALIZATION){ |
| | | normalization_layer layer = *(normalization_layer *)net.layers[i]; |
| | | visualize_normalization_layer(layer, buff); |
| | | layer l = net.layers[i]; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | prev = visualize_convolutional_layer(l, buff, prev); |
| | | } |
| | | } |
| | | } |
| | |
| | | { |
| | | int i,j; |
| | | for(i = 0; i < net.n; ++i){ |
| | | float *output = 0; |
| | | int n = 0; |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | output = layer.output; |
| | | image m = get_convolutional_image(layer); |
| | | n = m.h*m.w*m.c; |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | output = layer.output; |
| | | image m = get_maxpool_image(layer); |
| | | n = m.h*m.w*m.c; |
| | | } |
| | | else if(net.types[i] == CROP){ |
| | | crop_layer layer = *(crop_layer *)net.layers[i]; |
| | | output = layer.output; |
| | | image m = get_crop_image(layer); |
| | | n = m.h*m.w*m.c; |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | output = layer.output; |
| | | n = layer.outputs; |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | output = layer.output; |
| | | n = layer.inputs; |
| | | } |
| | | layer l = net.layers[i]; |
| | | float *output = l.output; |
| | | int n = l.outputs; |
| | | float mean = mean_array(output, n); |
| | | float vari = variance_array(output, n); |
| | | fprintf(stderr, "Layer %d - Mean: %f, Variance: %f\n",i,mean, vari); |