Alexey
2018-08-15 a723e1c62a27aeb39aaf7fcdeb3beb4e89fba32d
src/gemm.c
@@ -318,6 +318,25 @@
#include <immintrin.h>
#include <smmintrin.h>
#if defined(_MSC_VER) && _MSC_VER <= 1900
static inline __int32 _mm256_extract_epi64(__m256i a, const int index) {
    return a.m256i_i64[index];
}
static inline __int32 _mm256_extract_epi32(__m256i a, const int index) {
    return a.m256i_i32[index];
}
#endif
static inline float _castu32_f32(uint32_t a) {
    return *((float *)&a);
}
static inline float _mm256_extract_float32(__m256 a, const int index) {
    return a.m256_f32[index];
}
#else    // Linux GCC/Clang
#include <x86intrin.h>
#include <ammintrin.h>
@@ -325,6 +344,14 @@
#include <smmintrin.h>
#include <cpuid.h>
static inline float _castu32_f32(uint32_t a) {
    return *((float *)&a);
}
static inline float _mm256_extract_float32(__m256 a, const int index) {
    return _castu32_f32(_mm256_extract_epi32(_mm256_castps_si256(a), index));
}
void asm_cpuid(uint32_t* abcd, uint32_t eax)
{
    uint32_t ebx = 0, edx = 0, ecx = 0;
@@ -504,8 +531,10 @@
    }
    __m256i all256_last_zero = _mm256_set1_epi32(0xFFFFFFFF);
    all256_last_zero.m256i_i32[7] = 0;
    //__m256i all256_last_zero = _mm256_set1_epi32(0xFFFFFFFF);
    //all256_last_zero.m256i_i32[7] = 0;
    __m256i all256_last_zero =
        _mm256_set_epi32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x0);
    __m256i idx256 = _mm256_set_epi32(0, 7, 6, 5, 4, 3, 2, 1);
    //__m256 all256_sing1 = _mm256_set1_ps(0x80000000);
@@ -561,15 +590,15 @@
                                __m256 in = *((__m256*)&input[input_index]);
                                __m256 w = _mm256_set1_ps(weights[weights_index]);
                                //__m256 w_sign = _mm256_and_ps(w, _mm256_castsi256_ps(all256_sing1)); // check sign in 8 x 32-bit floats
                                __m256 xor = _mm256_xor_ps(w, in);
                                //printf("\n xor1 = %f, xor2 = %f \n", xor.m256_f32[0], xor.m256_f32[1]);
                                //printf("\n in = %f, w = %f, xor = %f \n", in.m256_f32[0], w_sign.m256_f32[0], xor.m256_f32[0]);
                                __m256 xor256 = _mm256_xor_ps(w, in);
                                //printf("\n xor256_1 = %f, xor256_2 = %f \n", xor256.m256_f32[0], xor256.m256_f32[1]);
                                //printf("\n in = %f, w = %f, xor256 = %f \n", in.m256_f32[0], w_sign.m256_f32[0], xor256.m256_f32[0]);
                                //__m256 pn1 = _mm256_and_ps(_mm256_castsi256_ps(all256i_one), xor);
                                //__m256 pn1 = _mm256_and_ps(_mm256_castsi256_ps(all256i_one), xor256);
                                //sum256 = xor;
                                sum256 = _mm256_add_ps(xor, sum256);
                                //sum256 = xor256;
                                sum256 = _mm256_add_ps(xor256, sum256);
                                //printf("\n --- \n");
                                //printf("\n 0 = %f, 1 = %f, 2 = %f, 3 = %f, 4 = %f, 5 = %f, 6 = %f, 7 = %f \n", in.m256_f32[0], in.m256_f32[1], in.m256_f32[2], in.m256_f32[3], in.m256_f32[4], in.m256_f32[5], in.m256_f32[6], in.m256_f32[7]);
@@ -638,12 +667,18 @@
static inline int popcnt256_custom(__m256i n) {
    __m256i val = count256(n);
    return val.m256i_i64[0] +
    val.m256i_i64[1] +
    val.m256i_i64[2] +
    val.m256i_i64[3];
    //return val.m256i_i64[0] +
    //val.m256i_i64[1] +
    //val.m256i_i64[2] +
    //val.m256i_i64[3];
    return _mm256_extract_epi64(val, 0)
        + _mm256_extract_epi64(val, 1)
        + _mm256_extract_epi64(val, 2)
        + _mm256_extract_epi64(val, 3);
}
// 5x times faster than gemm()-float32
// further optimizations: do mean-mult only for the last layer
void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED,
    unsigned char *A, int lda,
    unsigned char *B, int ldb,
@@ -686,10 +721,14 @@
            }
            // count of 1 bits
            count = count_sum.m256i_i64[0] +
                count_sum.m256i_i64[1] +
                count_sum.m256i_i64[2] +
                count_sum.m256i_i64[3];
            //count = count_sum.m256i_i64[0] +
            //    count_sum.m256i_i64[1] +
            //    count_sum.m256i_i64[2] +
             //   count_sum.m256i_i64[3];
            count = _mm256_extract_epi64(count_sum, 0)
                + _mm256_extract_epi64(count_sum, 1)
                + _mm256_extract_epi64(count_sum, 2)
                + _mm256_extract_epi64(count_sum, 3);
            int f1 = (K % bit_step == 0) ? 0 : (bit_step - (K % bit_step));
            count = count - f1;    // remove extra bits (from empty space for align only)
@@ -738,15 +777,15 @@
                    int col_index = (h * width_col + w)*ldb_align + c;   // transposed & aligned
                    //data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)];
                    __m256 src256 = _mm256_loadu_ps((__m256i *)(&data_im[im_col + width*(im_row + height*c_im)]));
                    data_col[col_index + ldb_align * 0] = src256.m256_f32[0];
                    data_col[col_index + ldb_align * 1] = src256.m256_f32[1];
                    data_col[col_index + ldb_align * 2] = src256.m256_f32[2];
                    data_col[col_index + ldb_align * 3] = src256.m256_f32[3];
                    data_col[col_index + ldb_align * 4] = src256.m256_f32[4];
                    data_col[col_index + ldb_align * 5] = src256.m256_f32[5];
                    data_col[col_index + ldb_align * 6] = src256.m256_f32[6];
                    data_col[col_index + ldb_align * 7] = src256.m256_f32[7];
                    __m256 src256 = _mm256_loadu_ps((float *)(&data_im[im_col + width*(im_row + height*c_im)]));
                    data_col[col_index + ldb_align * 0] = _mm256_extract_float32(src256, 0);// src256.m256_f32[0];
                    data_col[col_index + ldb_align * 1] = _mm256_extract_float32(src256, 1);// src256.m256_f32[1];
                    data_col[col_index + ldb_align * 2] = _mm256_extract_float32(src256, 2);// src256.m256_f32[2];
                    data_col[col_index + ldb_align * 3] = _mm256_extract_float32(src256, 3);// src256.m256_f32[3];
                    data_col[col_index + ldb_align * 4] = _mm256_extract_float32(src256, 4);// src256.m256_f32[4];
                    data_col[col_index + ldb_align * 5] = _mm256_extract_float32(src256, 5);// src256.m256_f32[5];
                    data_col[col_index + ldb_align * 6] = _mm256_extract_float32(src256, 6);// src256.m256_f32[6];
                    data_col[col_index + ldb_align * 7] = _mm256_extract_float32(src256, 7);// src256.m256_f32[7];
                    //_mm256_storeu_ps(&data_col[col_index], src256);
                }
@@ -839,7 +878,7 @@
    int channels_col = channels * ksize * ksize;
    // optimized version
    if (height_col == height && width_col == width && stride == 1 && pad == 1)
    if (height_col == height && width_col == width && stride == 1 && pad == 1 && is_fma_avx())
    {
        #pragma omp parallel for
        for (c = 0; c < channels_col; ++c) {
@@ -853,7 +892,7 @@
                    int col_index = (c * height_col + h) * width_col + w;
                    //data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)];
                    __m256 src256 = _mm256_loadu_ps((__m256i *)(&data_im[im_col + width*(im_row + height*c_im)]));
                    __m256 src256 = _mm256_loadu_ps((float *)(&data_im[im_col + width*(im_row + height*c_im)]));
                    _mm256_storeu_ps(&data_col[col_index], src256);
                }
@@ -918,26 +957,51 @@
    }
}
void transpose_8x8_bits(unsigned char A[8], unsigned char B[8], int m, int n)
{
    unsigned x, y, t;
    // Load the array and pack it into x and y.
    x = (A[0] << 24) | (A[m] << 16) | (A[2 * m] << 8) | A[3 * m];
    y = (A[4 * m] << 24) | (A[5 * m] << 16) | (A[6 * m] << 8) | A[7 * m];
    t = (x ^ (x >> 7)) & 0x00AA00AA; x = x ^ t ^ (t << 7);
    t = (y ^ (y >> 7)) & 0x00AA00AA; y = y ^ t ^ (t << 7);
    t = (x ^ (x >> 14)) & 0x0000CCCC; x = x ^ t ^ (t << 14);
    t = (y ^ (y >> 14)) & 0x0000CCCC; y = y ^ t ^ (t << 14);
    t = (x & 0xF0F0F0F0) | ((y >> 4) & 0x0F0F0F0F);
    y = ((x << 4) & 0xF0F0F0F0) | (y & 0x0F0F0F0F);
    x = t;
    B[0] = x >> 24; B[n] = x >> 16; B[2 * n] = x >> 8; B[3 * n] = x;
    B[4 * n] = y >> 24; B[5 * n] = y >> 16; B[6 * n] = y >> 8; B[7 * n] = y;
}
void activate_array_cpu_custom(float *x, const int n, const ACTIVATION a)
{
    int i;
    int i = 0;
    if (a == LINEAR)
    {}
    else if (a == LEAKY)
    {
        __m256i all256_sing1 = _mm256_set_epi32(0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000);
        __m256 all256_01 = _mm256_set1_ps(0.1F);
        if (is_fma_avx()) {
            __m256i all256_sing1 = _mm256_set_epi32(0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000);
            __m256 all256_01 = _mm256_set1_ps(0.1F);
        for (i = 0; i < n-8; i += 8) {
            //x[i] = (x[i]>0) ? x[i] : .1*x[i];
            for (i = 0; i < n - 8; i += 8) {
                //x[i] = (x[i]>0) ? x[i] : .1*x[i];
            __m256 src256 = _mm256_loadu_ps((__m256 *)(&x[i]));
            __m256 mult256 = _mm256_mul_ps((src256), all256_01); // mult * 0.1
                __m256 src256 = _mm256_loadu_ps(&x[i]);
                __m256 mult256 = _mm256_mul_ps((src256), all256_01); // mult * 0.1
            __m256i sign256 = _mm256_and_si256(_mm256_castps_si256(src256), all256_sing1); // check sign in 8 x 32-bit floats
                __m256i sign256 = _mm256_and_si256(_mm256_castps_si256(src256), all256_sing1); // check sign in 8 x 32-bit floats
            __m256 result256 = _mm256_blendv_ps(src256, mult256, _mm256_castsi256_ps(sign256)); // (sign>0) ? src : mult;
            _mm256_storeu_ps((__m256 *)(&x[i]), result256);
                __m256 result256 = _mm256_blendv_ps(src256, mult256, _mm256_castsi256_ps(sign256)); // (sign>0) ? src : mult;
                _mm256_storeu_ps(&x[i], result256);
            }
        }
        for (; i < n; ++i) {