| | |
| | | layer->delta = calloc(batch*outputs, sizeof(float*)); |
| | | |
| | | layer->weight_updates = calloc(inputs*outputs, sizeof(float)); |
| | | layer->bias_updates = calloc(outputs, sizeof(float)); |
| | | |
| | | layer->weight_prev = calloc(inputs*outputs, sizeof(float)); |
| | | layer->bias_prev = calloc(outputs, sizeof(float)); |
| | | |
| | | layer->weights = calloc(inputs*outputs, sizeof(float)); |
| | | layer->biases = calloc(outputs, sizeof(float)); |
| | | |
| | | |
| | | float scale = 1./sqrt(inputs); |
| | | //scale = .01; |
| | | for(i = 0; i < inputs*outputs; ++i){ |
| | | layer->weights[i] = scale*rand_normal(); |
| | | } |
| | | |
| | | layer->bias_updates = calloc(outputs, sizeof(float)); |
| | | layer->biases = calloc(outputs, sizeof(float)); |
| | | for(i = 0; i < outputs; ++i){ |
| | | layer->biases[i] = scale; |
| | | } |
| | |
| | | return layer; |
| | | } |
| | | |
| | | void secret_update_connected_layer(connected_layer *layer) |
| | | { |
| | | int n = layer->outputs*layer->inputs; |
| | | float dot = dot_cpu(n, layer->weight_updates, 1, layer->weight_prev, 1); |
| | | float mag = sqrt(dot_cpu(n, layer->weight_updates, 1, layer->weight_updates, 1)) |
| | | * sqrt(dot_cpu(n, layer->weight_prev, 1, layer->weight_prev, 1)); |
| | | float cos = dot/mag; |
| | | if(cos > .3) layer->learning_rate *= 1.1; |
| | | else if (cos < -.3) layer-> learning_rate /= 1.1; |
| | | |
| | | scal_cpu(n, layer->momentum, layer->weight_prev, 1); |
| | | axpy_cpu(n, 1, layer->weight_updates, 1, layer->weight_prev, 1); |
| | | scal_cpu(n, 0, layer->weight_updates, 1); |
| | | |
| | | scal_cpu(layer->outputs, layer->momentum, layer->bias_prev, 1); |
| | | axpy_cpu(layer->outputs, 1, layer->bias_updates, 1, layer->bias_prev, 1); |
| | | scal_cpu(layer->outputs, 0, layer->bias_updates, 1); |
| | | |
| | | //printf("rate: %f\n", layer->learning_rate); |
| | | |
| | | axpy_cpu(layer->outputs, layer->learning_rate, layer->bias_prev, 1, layer->biases, 1); |
| | | |
| | | axpy_cpu(layer->inputs*layer->outputs, -layer->decay, layer->weights, 1, layer->weight_prev, 1); |
| | | axpy_cpu(layer->inputs*layer->outputs, layer->learning_rate, layer->weight_prev, 1, layer->weights, 1); |
| | | } |
| | | |
| | | void update_connected_layer(connected_layer layer) |
| | | { |
| | | axpy_cpu(layer.outputs, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1); |
| | |
| | | axpy_ongpu(layer.inputs*layer.outputs, -layer.decay, layer.weights_cl, 1, layer.weight_updates_cl, 1); |
| | | axpy_ongpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates_cl, 1, layer.weights_cl, 1); |
| | | scal_ongpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates_cl, 1); |
| | | pull_connected_layer(layer); |
| | | //pull_connected_layer(layer); |
| | | } |
| | | |
| | | void forward_connected_layer_gpu(connected_layer layer, cl_mem input) |