| | |
| | | |
| | | layer->biases = calloc(n, sizeof(float)); |
| | | layer->bias_updates = calloc(n, sizeof(float)); |
| | | float scale = 1./(size*size*c); |
| | | scale = .01; |
| | | for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*2*(rand_uniform()-.5); |
| | | float scale = 1./sqrt(size*size*c); |
| | | //scale = .05; |
| | | for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*rand_normal(); |
| | | for(i = 0; i < n; ++i){ |
| | | //layer->biases[i] = rand_normal()*scale + scale; |
| | | layer->biases[i] = .5; |
| | | layer->biases[i] = scale; |
| | | } |
| | | int out_h = convolutional_out_height(*layer); |
| | | int out_w = convolutional_out_width(*layer); |
| | |
| | | int n = layer.size*layer.size*layer.c; |
| | | int k = convolutional_out_height(layer)* |
| | | convolutional_out_width(layer); |
| | | |
| | | gradient_array(layer.output, m*k*layer.batch, layer.activation, layer.delta); |
| | | |
| | | learn_bias_convolutional_layer(layer); |
| | | |
| | | if(delta) memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float)); |
| | |
| | | axpy_cpu(layer.n, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1); |
| | | scal_cpu(layer.n, layer.momentum, layer.bias_updates, 1); |
| | | |
| | | scal_cpu(size, 1.-layer.learning_rate*layer.decay, layer.filters, 1); |
| | | axpy_cpu(size, -layer.decay, layer.filters, 1, layer.filter_updates, 1); |
| | | axpy_cpu(size, layer.learning_rate, layer.filter_updates, 1, layer.filters, 1); |
| | | scal_cpu(size, layer.momentum, layer.filter_updates, 1); |
| | | } |
| | |
| | | } |
| | | |
| | | #ifdef GPU |
| | | #define BLOCK 32 |
| | | |
| | | #define STR_HELPER(x) #x |
| | | #define STR(x) STR_HELPER(x) |
| | | |
| | | |
| | | cl_kernel get_convolutional_learn_bias_kernel() |
| | | { |
| | | static int init = 0; |
| | | static cl_kernel kernel; |
| | | if(!init){ |
| | | kernel = get_kernel("src/convolutional_layer.cl", "learn_bias", 0); |
| | | kernel = get_kernel("src/convolutional_layer.cl", "learn_bias", "-D BLOCK=" STR(BLOCK)); |
| | | init = 1; |
| | | } |
| | | return kernel; |
| | |
| | | { |
| | | int size = convolutional_out_height(layer) * convolutional_out_width(layer); |
| | | |
| | | cl_setup(); |
| | | cl_kernel kernel = get_convolutional_learn_bias_kernel(); |
| | | cl_command_queue queue = cl.queue; |
| | | |
| | |
| | | cl.error = clSetKernelArg(kernel, i++, sizeof(layer.bias_updates_cl), (void*) &layer.bias_updates_cl); |
| | | check_error(cl); |
| | | |
| | | const size_t global_size[] = {layer.n}; |
| | | const size_t global_size[] = {layer.n*BLOCK}; |
| | | const size_t local_size[] = {BLOCK}; |
| | | |
| | | cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0); |
| | | cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, local_size, 0, 0, 0); |
| | | check_error(cl); |
| | | } |
| | | |
| | |
| | | static int init = 0; |
| | | static cl_kernel kernel; |
| | | if(!init){ |
| | | kernel = get_kernel("src/convolutional_layer.cl", "bias", 0); |
| | | kernel = get_kernel("src/convolutional_layer.cl", "bias", "-D BLOCK=" STR(BLOCK)); |
| | | init = 1; |
| | | } |
| | | return kernel; |
| | |
| | | int out_w = convolutional_out_width(layer); |
| | | int size = out_h*out_w; |
| | | |
| | | cl_setup(); |
| | | cl_kernel kernel = get_convolutional_bias_kernel(); |
| | | cl_command_queue queue = cl.queue; |
| | | |
| | |
| | | axpy_ongpu(layer.n, layer.learning_rate, layer.bias_updates_cl, 1, layer.biases_cl, 1); |
| | | scal_ongpu(layer.n,layer.momentum, layer.bias_updates_cl, 1); |
| | | |
| | | scal_ongpu(size, 1.-layer.learning_rate*layer.decay, layer.filters_cl, 1); |
| | | axpy_ongpu(size, -layer.decay, layer.filters_cl, 1, layer.filter_updates_cl, 1); |
| | | axpy_ongpu(size, layer.learning_rate, layer.filter_updates_cl, 1, layer.filters_cl, 1); |
| | | scal_ongpu(size, layer.momentum, layer.filter_updates_cl, 1); |
| | | pull_convolutional_layer(layer); |
| | | //pull_convolutional_layer(layer); |
| | | } |
| | | |
| | | |