| | |
| | | #include "connected_layer.h" |
| | | #include "batchnorm_layer.h" |
| | | #include "utils.h" |
| | | #include "cuda.h" |
| | | #include "blas.h" |
| | |
| | | l.outputs = outputs; |
| | | l.batch=batch; |
| | | l.batch_normalize = batch_normalize; |
| | | l.h = 1; |
| | | l.w = 1; |
| | | l.c = inputs; |
| | | l.out_h = 1; |
| | | l.out_w = 1; |
| | | l.out_c = outputs; |
| | | |
| | | l.output = calloc(batch*outputs, sizeof(float)); |
| | | l.delta = calloc(batch*outputs, sizeof(float)); |
| | |
| | | l.weights = calloc(outputs*inputs, sizeof(float)); |
| | | l.biases = calloc(outputs, sizeof(float)); |
| | | |
| | | |
| | | //float scale = 1./sqrt(inputs); |
| | | float scale = sqrt(2./inputs); |
| | | for(i = 0; i < outputs*inputs; ++i){ |
| | |
| | | } |
| | | |
| | | for(i = 0; i < outputs; ++i){ |
| | | l.biases[i] = scale; |
| | | l.biases[i] = 0; |
| | | } |
| | | |
| | | if(batch_normalize){ |
| | |
| | | if(c) gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | } |
| | | |
| | | |
| | | void denormalize_connected_layer(layer l) |
| | | { |
| | | int i, j; |
| | | for(i = 0; i < l.outputs; ++i){ |
| | | float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .00001); |
| | | for(j = 0; j < l.inputs; ++j){ |
| | | l.weights[i*l.inputs + j] *= scale; |
| | | } |
| | | l.biases[i] -= l.rolling_mean[i] * scale; |
| | | } |
| | | } |
| | | |
| | | #ifdef GPU |
| | | |
| | | void pull_connected_layer(connected_layer l) |
| | |
| | | { |
| | | int i; |
| | | fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1); |
| | | /* |
| | | for(i = 0; i < l.batch; ++i){ |
| | | copy_ongpu_offset(l.outputs, l.biases_gpu, 0, 1, l.output_gpu, i*l.outputs, 1); |
| | | } |
| | | */ |
| | | |
| | | int m = l.batch; |
| | | int k = l.inputs; |
| | | int n = l.outputs; |
| | |
| | | float * c = l.output_gpu; |
| | | gemm_ongpu(0,1,m,n,k,1,a,k,b,k,1,c,n); |
| | | if(l.batch_normalize){ |
| | | if(state.train){ |
| | | fast_mean_gpu(l.output_gpu, l.batch, l.outputs, 1, l.mean_gpu); |
| | | fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.outputs, 1, l.variance_gpu); |
| | | |
| | | scal_ongpu(l.outputs, .95, l.rolling_mean_gpu, 1); |
| | | axpy_ongpu(l.outputs, .05, l.mean_gpu, 1, l.rolling_mean_gpu, 1); |
| | | scal_ongpu(l.outputs, .95, l.rolling_variance_gpu, 1); |
| | | axpy_ongpu(l.outputs, .05, l.variance_gpu, 1, l.rolling_variance_gpu, 1); |
| | | |
| | | copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1); |
| | | normalize_gpu(l.output_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.outputs, 1); |
| | | copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_norm_gpu, 1); |
| | | } else { |
| | | normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.outputs, 1); |
| | | } |
| | | |
| | | scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.outputs, 1); |
| | | forward_batchnorm_layer_gpu(l, state); |
| | | } |
| | | for(i = 0; i < l.batch; ++i){ |
| | | axpy_ongpu(l.outputs, 1, l.biases_gpu, 1, l.output_gpu + i*l.outputs, 1); |
| | | } |
| | | activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation); |
| | | |
| | | /* |
| | | cuda_pull_array(l.output_gpu, l.output, l.outputs*l.batch); |
| | | float avg = mean_array(l.output, l.outputs*l.batch); |
| | | printf("%f\n", avg); |
| | | */ |
| | | } |
| | | |
| | | void backward_connected_layer_gpu(connected_layer l, network_state state) |
| | | { |
| | | int i; |
| | | constrain_ongpu(l.outputs*l.batch, 5, l.delta_gpu, 1); |
| | | gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu); |
| | | for(i = 0; i < l.batch; ++i){ |
| | | axpy_ongpu(l.outputs, 1, l.delta_gpu + i*l.outputs, 1, l.bias_updates_gpu, 1); |
| | | } |
| | | |
| | | if(l.batch_normalize){ |
| | | backward_scale_gpu(l.x_norm_gpu, l.delta_gpu, l.batch, l.outputs, 1, l.scale_updates_gpu); |
| | | |
| | | scale_bias_gpu(l.delta_gpu, l.scales_gpu, l.batch, l.outputs, 1); |
| | | |
| | | fast_mean_delta_gpu(l.delta_gpu, l.variance_gpu, l.batch, l.outputs, 1, l.mean_delta_gpu); |
| | | fast_variance_delta_gpu(l.x_gpu, l.delta_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.outputs, 1, l.variance_delta_gpu); |
| | | normalize_delta_gpu(l.x_gpu, l.mean_gpu, l.variance_gpu, l.mean_delta_gpu, l.variance_delta_gpu, l.batch, l.outputs, 1, l.delta_gpu); |
| | | backward_batchnorm_layer_gpu(l, state); |
| | | } |
| | | |
| | | int m = l.outputs; |