t1
Joseph Redmon
2016-06-20 ab75d5c5783db4792e400f933d584984f3aa7bf0
src/convolutional_layer.c
@@ -1,5 +1,6 @@
#include "convolutional_layer.h"
#include "utils.h"
#include "batchnorm_layer.h"
#include "im2col.h"
#include "col2im.h"
#include "blas.h"
@@ -7,6 +8,66 @@
#include <stdio.h>
#include <time.h>
#ifdef AI2
#include "xnor_layer.h"
#endif
#ifndef AI2
#define AI2 0
void forward_xnor_layer(layer l, network_state state);
#endif
void swap_binary(convolutional_layer *l)
{
    float *swap = l->filters;
    l->filters = l->binary_filters;
    l->binary_filters = swap;
    #ifdef GPU
    swap = l->filters_gpu;
    l->filters_gpu = l->binary_filters_gpu;
    l->binary_filters_gpu = swap;
    #endif
}
void binarize_filters(float *filters, int n, int size, float *binary)
{
    int i, f;
    for(f = 0; f < n; ++f){
        float mean = 0;
        for(i = 0; i < size; ++i){
            mean += fabs(filters[f*size + i]);
        }
        mean = mean / size;
        for(i = 0; i < size; ++i){
            binary[f*size + i] = (filters[f*size + i] > 0) ? mean : -mean;
        }
    }
}
void binarize_cpu(float *input, int n, float *binary)
{
    int i;
    for(i = 0; i < n; ++i){
        binary[i] = (input[i] > 0) ? 1 : -1;
    }
}
void binarize_input(float *input, int n, int size, float *binary)
{
    int i, s;
    for(s = 0; s < size; ++s){
        float mean = 0;
        for(i = 0; i < n; ++i){
            mean += fabs(input[i*size + s]);
        }
        mean = mean / n;
        for(i = 0; i < n; ++i){
            binary[i*size + s] = (input[i*size + s] > 0) ? mean : -mean;
        }
    }
}
int convolutional_out_height(convolutional_layer l)
{
    int h = l.h;
@@ -41,7 +102,82 @@
    return float_to_image(w,h,c,l.delta);
}
convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation)
size_t get_workspace_size(layer l){
#ifdef CUDNN
    size_t most = 0;
    size_t s = 0;
    cudnnGetConvolutionForwardWorkspaceSize(cudnn_handle(),
            l.srcTensorDesc,
            l.filterDesc,
            l.convDesc,
            l.dstTensorDesc,
            l.fw_algo,
            &s);
    if (s > most) most = s;
    cudnnGetConvolutionBackwardFilterWorkspaceSize(cudnn_handle(),
            l.srcTensorDesc,
            l.ddstTensorDesc,
            l.convDesc,
            l.dfilterDesc,
            l.bf_algo,
            &s);
    if (s > most) most = s;
    cudnnGetConvolutionBackwardDataWorkspaceSize(cudnn_handle(),
            l.filterDesc,
            l.ddstTensorDesc,
            l.convDesc,
            l.dsrcTensorDesc,
            l.bd_algo,
            &s);
    if (s > most) most = s;
    return most;
#else
    return (size_t)l.out_h*l.out_w*l.size*l.size*l.c*sizeof(float);
#endif
}
#ifdef GPU
#ifdef CUDNN
void cudnn_convolutional_setup(layer *l)
{
    cudnnSetTensor4dDescriptor(l->dsrcTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->c, l->h, l->w);
    cudnnSetTensor4dDescriptor(l->ddstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w);
    cudnnSetFilter4dDescriptor(l->dfilterDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size);
    cudnnSetTensor4dDescriptor(l->srcTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->c, l->h, l->w);
    cudnnSetTensor4dDescriptor(l->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w);
    cudnnSetFilter4dDescriptor(l->filterDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size);
    int padding = l->pad ? l->size/2 : 0;
    cudnnSetConvolution2dDescriptor(l->convDesc, padding, padding, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION);
    cudnnGetConvolutionForwardAlgorithm(cudnn_handle(),
            l->srcTensorDesc,
            l->filterDesc,
            l->convDesc,
            l->dstTensorDesc,
            CUDNN_CONVOLUTION_FWD_PREFER_FASTEST,
            0,
            &l->fw_algo);
    cudnnGetConvolutionBackwardDataAlgorithm(cudnn_handle(),
            l->filterDesc,
            l->ddstTensorDesc,
            l->convDesc,
            l->dsrcTensorDesc,
            CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST,
            0,
            &l->bd_algo);
    cudnnGetConvolutionBackwardFilterAlgorithm(cudnn_handle(),
            l->srcTensorDesc,
            l->ddstTensorDesc,
            l->convDesc,
            l->dfilterDesc,
            CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST,
            0,
            &l->bf_algo);
}
#endif
#endif
convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, int batch_normalize, int binary, int xnor)
{
    int i;
    convolutional_layer l = {0};
@@ -51,22 +187,23 @@
    l.w = w;
    l.c = c;
    l.n = n;
    l.binary = binary;
    l.xnor = xnor;
    l.batch = batch;
    l.stride = stride;
    l.size = size;
    l.pad = pad;
    l.batch_normalize = batch_normalize;
    l.filters = calloc(c*n*size*size, sizeof(float));
    l.filter_updates = calloc(c*n*size*size, sizeof(float));
    l.biases = calloc(n, sizeof(float));
    l.bias_updates = calloc(n, sizeof(float));
    // float scale = 1./sqrt(size*size*c);
    float scale = sqrt(2./(size*size*c));
    for(i = 0; i < c*n*size*size; ++i) l.filters[i] = 2*scale*rand_uniform() - scale;
    for(i = 0; i < n; ++i){
        l.biases[i] = scale;
    }
    for(i = 0; i < c*n*size*size; ++i) l.filters[i] = scale*rand_uniform(-1, 1);
    int out_h = convolutional_out_height(l);
    int out_w = convolutional_out_width(l);
    l.out_h = out_h;
@@ -75,21 +212,79 @@
    l.outputs = l.out_h * l.out_w * l.out_c;
    l.inputs = l.w * l.h * l.c;
    l.col_image = calloc(out_h*out_w*size*size*c, sizeof(float));
    l.output = calloc(l.batch*out_h * out_w * n, sizeof(float));
    l.delta  = calloc(l.batch*out_h * out_w * n, sizeof(float));
    #ifdef GPU
    if(binary){
        l.binary_filters = calloc(c*n*size*size, sizeof(float));
        l.cfilters = calloc(c*n*size*size, sizeof(char));
        l.scales = calloc(n, sizeof(float));
    }
    if(xnor){
        l.binary_filters = calloc(c*n*size*size, sizeof(float));
        l.binary_input = calloc(l.inputs*l.batch, sizeof(float));
    }
    if(batch_normalize){
        l.scales = calloc(n, sizeof(float));
        l.scale_updates = calloc(n, sizeof(float));
        for(i = 0; i < n; ++i){
            l.scales[i] = 1;
        }
        l.mean = calloc(n, sizeof(float));
        l.variance = calloc(n, sizeof(float));
        l.rolling_mean = calloc(n, sizeof(float));
        l.rolling_variance = calloc(n, sizeof(float));
    }
#ifdef GPU
    l.filters_gpu = cuda_make_array(l.filters, c*n*size*size);
    l.filter_updates_gpu = cuda_make_array(l.filter_updates, c*n*size*size);
    l.biases_gpu = cuda_make_array(l.biases, n);
    l.bias_updates_gpu = cuda_make_array(l.bias_updates, n);
    l.col_image_gpu = cuda_make_array(l.col_image, out_h*out_w*size*size*c);
    l.scales_gpu = cuda_make_array(l.scales, n);
    l.scale_updates_gpu = cuda_make_array(l.scale_updates, n);
    l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
    l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
    #endif
    if(binary){
        l.binary_filters_gpu = cuda_make_array(l.filters, c*n*size*size);
    }
    if(xnor){
        l.binary_filters_gpu = cuda_make_array(l.filters, c*n*size*size);
        l.binary_input_gpu = cuda_make_array(0, l.inputs*l.batch);
    }
    if(batch_normalize){
        l.mean_gpu = cuda_make_array(l.mean, n);
        l.variance_gpu = cuda_make_array(l.variance, n);
        l.rolling_mean_gpu = cuda_make_array(l.mean, n);
        l.rolling_variance_gpu = cuda_make_array(l.variance, n);
        l.mean_delta_gpu = cuda_make_array(l.mean, n);
        l.variance_delta_gpu = cuda_make_array(l.variance, n);
        l.x_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
        l.x_norm_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
    }
#ifdef CUDNN
    cudnnCreateTensorDescriptor(&l.srcTensorDesc);
    cudnnCreateTensorDescriptor(&l.dstTensorDesc);
    cudnnCreateFilterDescriptor(&l.filterDesc);
    cudnnCreateTensorDescriptor(&l.dsrcTensorDesc);
    cudnnCreateTensorDescriptor(&l.ddstTensorDesc);
    cudnnCreateFilterDescriptor(&l.dfilterDesc);
    cudnnCreateConvolutionDescriptor(&l.convDesc);
    cudnn_convolutional_setup(&l);
#endif
#endif
    l.workspace_size = get_workspace_size(l);
    l.activation = activation;
    fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
@@ -97,6 +292,42 @@
    return l;
}
void denormalize_convolutional_layer(convolutional_layer l)
{
    int i, j;
    for(i = 0; i < l.n; ++i){
        float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .00001);
        for(j = 0; j < l.c*l.size*l.size; ++j){
            l.filters[i*l.c*l.size*l.size + j] *= scale;
        }
        l.biases[i] -= l.rolling_mean[i] * scale;
    }
}
void test_convolutional_layer()
{
    convolutional_layer l = make_convolutional_layer(1, 5, 5, 3, 2, 5, 2, 1, LEAKY, 1, 0, 0);
    l.batch_normalize = 1;
    float data[] = {1,1,1,1,1,
        1,1,1,1,1,
        1,1,1,1,1,
        1,1,1,1,1,
        1,1,1,1,1,
        2,2,2,2,2,
        2,2,2,2,2,
        2,2,2,2,2,
        2,2,2,2,2,
        2,2,2,2,2,
        3,3,3,3,3,
        3,3,3,3,3,
        3,3,3,3,3,
        3,3,3,3,3,
        3,3,3,3,3};
    network_state state = {0};
    state.input = data;
    forward_convolutional_layer(l, state);
}
void resize_convolutional_layer(convolutional_layer *l, int w, int h)
{
    l->w = w;
@@ -110,31 +341,43 @@
    l->outputs = l->out_h * l->out_w * l->out_c;
    l->inputs = l->w * l->h * l->c;
    l->col_image = realloc(l->col_image,
                                out_h*out_w*l->size*l->size*l->c*sizeof(float));
    l->output = realloc(l->output,
                                l->batch*out_h * out_w * l->n*sizeof(float));
            l->batch*out_h * out_w * l->n*sizeof(float));
    l->delta  = realloc(l->delta,
                                l->batch*out_h * out_w * l->n*sizeof(float));
            l->batch*out_h * out_w * l->n*sizeof(float));
    #ifdef GPU
    cuda_free(l->col_image_gpu);
#ifdef GPU
    cuda_free(l->delta_gpu);
    cuda_free(l->output_gpu);
    l->col_image_gpu = cuda_make_array(l->col_image, out_h*out_w*l->size*l->size*l->c);
    l->delta_gpu =     cuda_make_array(l->delta, l->batch*out_h*out_w*l->n);
    l->output_gpu =    cuda_make_array(l->output, l->batch*out_h*out_w*l->n);
    #endif
#ifdef CUDNN
    cudnn_convolutional_setup(l);
#endif
#endif
    l->workspace_size = get_workspace_size(*l);
}
void bias_output(float *output, float *biases, int batch, int n, int size)
void add_bias(float *output, float *biases, int batch, int n, int size)
{
    int i,j,b;
    for(b = 0; b < batch; ++b){
        for(i = 0; i < n; ++i){
            for(j = 0; j < size; ++j){
                output[(b*n + i)*size + j] = biases[i];
                output[(b*n + i)*size + j] += biases[i];
            }
        }
    }
}
void scale_bias(float *output, float *scales, int batch, int n, int size)
{
    int i,j,b;
    for(b = 0; b < batch; ++b){
        for(i = 0; i < n; ++i){
            for(j = 0; j < size; ++j){
                output[(b*n + i)*size + j] *= scales[i];
            }
        }
    }
@@ -150,31 +393,83 @@
    }
}
void forward_convolutional_layer(const convolutional_layer l, network_state state)
void forward_convolutional_layer(convolutional_layer l, network_state state)
{
    int out_h = convolutional_out_height(l);
    int out_w = convolutional_out_width(l);
    int i;
    bias_output(l.output, l.biases, l.batch, l.n, out_h*out_w);
    fill_cpu(l.outputs*l.batch, 0, l.output, 1);
    /*
       if(l.binary){
       binarize_filters(l.filters, l.n, l.c*l.size*l.size, l.binary_filters);
       binarize_filters2(l.filters, l.n, l.c*l.size*l.size, l.cfilters, l.scales);
       swap_binary(&l);
       }
     */
    /*
       if(l.binary){
       int m = l.n;
       int k = l.size*l.size*l.c;
       int n = out_h*out_w;
       char  *a = l.cfilters;
       float *b = state.workspace;
       float *c = l.output;
       for(i = 0; i < l.batch; ++i){
       im2col_cpu(state.input, l.c, l.h, l.w,
       l.size, l.stride, l.pad, b);
       gemm_bin(m,n,k,1,a,k,b,n,c,n);
       c += n*m;
       state.input += l.c*l.h*l.w;
       }
       scale_bias(l.output, l.scales, l.batch, l.n, out_h*out_w);
       add_bias(l.output, l.biases, l.batch, l.n, out_h*out_w);
       activate_array(l.output, m*n*l.batch, l.activation);
       return;
       }
     */
    if(l.xnor ){
        binarize_filters(l.filters, l.n, l.c*l.size*l.size, l.binary_filters);
        swap_binary(&l);
        binarize_cpu(state.input, l.c*l.h*l.w*l.batch, l.binary_input);
        state.input = l.binary_input;
    }
    int m = l.n;
    int k = l.size*l.size*l.c;
    int n = out_h*out_w;
    float *a = l.filters;
    float *b = l.col_image;
    float *c = l.output;
    if (l.xnor && l.c%32 == 0 && AI2) {
        forward_xnor_layer(l, state);
        printf("xnor\n");
    } else {
    for(i = 0; i < l.batch; ++i){
        im2col_cpu(state.input, l.c, l.h, l.w,
            l.size, l.stride, l.pad, b);
        gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
        c += n*m;
        state.input += l.c*l.h*l.w;
        float *a = l.filters;
        float *b = state.workspace;
        float *c = l.output;
        for(i = 0; i < l.batch; ++i){
            im2col_cpu(state.input, l.c, l.h, l.w,
                    l.size, l.stride, l.pad, b);
            gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
            c += n*m;
            state.input += l.c*l.h*l.w;
        }
    }
    if(l.batch_normalize){
        forward_batchnorm_layer(l, state);
    }
    add_bias(l.output, l.biases, l.batch, l.n, out_h*out_w);
    activate_array(l.output, m*n*l.batch, l.activation);
    if(l.binary || l.xnor) swap_binary(&l);
}
void backward_convolutional_layer(convolutional_layer l, network_state state)
@@ -190,7 +485,7 @@
    for(i = 0; i < l.batch; ++i){
        float *a = l.delta + i*m*k;
        float *b = l.col_image;
        float *b = state.workspace;
        float *c = l.filter_updates;
        float *im = state.input+i*l.c*l.h*l.w;
@@ -202,11 +497,11 @@
        if(state.delta){
            a = l.filters;
            b = l.delta + i*m*k;
            c = l.col_image;
            c = state.workspace;
            gemm(1,0,n,k,m,1,a,n,b,k,0,c,k);
            col2im_cpu(l.col_image, l.c,  l.h,  l.w,  l.size,  l.stride, l.pad, state.delta+i*l.c*l.h*l.w);
            col2im_cpu(state.workspace, l.c,  l.h,  l.w,  l.size,  l.stride, l.pad, state.delta+i*l.c*l.h*l.w);
        }
    }
}