| | |
| | | #include "opencv2/highgui/highgui_c.h" |
| | | #endif |
| | | |
| | | char *voc_class_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"}; |
| | | |
| | | void draw_yolo(image im, float *box, int side, int objectness, char *label, float thresh) |
| | | { |
| | | int classes = 20; |
| | | int elems = 4+classes+objectness; |
| | | int j; |
| | | int r, c; |
| | | |
| | | for(r = 0; r < side; ++r){ |
| | | for(c = 0; c < side; ++c){ |
| | | j = (r*side + c) * elems; |
| | | float scale = 1; |
| | | if(objectness) scale = 1 - box[j++]; |
| | | int class = max_index(box+j, classes); |
| | | if(scale * box[j+class] > thresh){ |
| | | int width = sqrt(scale*box[j+class])*5 + 1; |
| | | printf("%f %s\n", scale * box[j+class], voc_class_names[class]); |
| | | float red = get_color(0,class,classes); |
| | | float green = get_color(1,class,classes); |
| | | float blue = get_color(2,class,classes); |
| | | |
| | | j += classes; |
| | | float x = box[j+0]; |
| | | float y = box[j+1]; |
| | | x = (x+c)/side; |
| | | y = (y+r)/side; |
| | | float w = box[j+2]; //*maxwidth; |
| | | float h = box[j+3]; //*maxheight; |
| | | h = h*h; |
| | | w = w*w; |
| | | |
| | | int left = (x-w/2)*im.w; |
| | | int right = (x+w/2)*im.w; |
| | | int top = (y-h/2)*im.h; |
| | | int bot = (y+h/2)*im.h; |
| | | draw_box_width(im, left, top, right, bot, width, red, green, blue); |
| | | } |
| | | } |
| | | } |
| | | show_image(im, label); |
| | | } |
| | | char *voc_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"}; |
| | | image voc_labels[20]; |
| | | |
| | | void train_yolo(char *cfgfile, char *weightfile) |
| | | { |
| | | char *train_images = "/home/pjreddie/data/voc/test/train.txt"; |
| | | char *train_images = "/data/voc/train.txt"; |
| | | char *backup_directory = "/home/pjreddie/backup/"; |
| | | srand(time(0)); |
| | | data_seed = time(0); |
| | |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | detection_layer layer = get_network_detection_layer(net); |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 128; |
| | | int i = net.seen/imgs; |
| | | |
| | | char **paths; |
| | | list *plist = get_paths(train_images); |
| | | int N = plist->size; |
| | | paths = (char **)list_to_array(plist); |
| | | |
| | | if(i*imgs > N*80){ |
| | | net.layers[net.n-1].joint = 1; |
| | | net.layers[net.n-1].objectness = 0; |
| | | } |
| | | if(i*imgs > N*120){ |
| | | net.layers[net.n-1].rescore = 1; |
| | | } |
| | | int imgs = net.batch*net.subdivisions; |
| | | int i = *net.seen/imgs; |
| | | data train, buffer; |
| | | |
| | | int classes = layer.classes; |
| | | int background = layer.objectness; |
| | | int side = sqrt(get_detection_layer_locations(layer)); |
| | | |
| | | layer l = net.layers[net.n - 1]; |
| | | |
| | | int side = l.side; |
| | | int classes = l.classes; |
| | | float jitter = l.jitter; |
| | | |
| | | list *plist = get_paths(train_images); |
| | | //int N = plist->size; |
| | | char **paths = (char **)list_to_array(plist); |
| | | |
| | | load_args args = {0}; |
| | | args.w = net.w; |
| | |
| | | args.n = imgs; |
| | | args.m = plist->size; |
| | | args.classes = classes; |
| | | args.jitter = jitter; |
| | | args.num_boxes = side; |
| | | args.background = background; |
| | | args.d = &buffer; |
| | | args.type = DETECTION_DATA; |
| | | args.type = REGION_DATA; |
| | | |
| | | pthread_t load_thread = load_data_in_thread(args); |
| | | clock_t time; |
| | | while(i*imgs < N*130){ |
| | | //while(i*imgs < N*120){ |
| | | while(get_current_batch(net) < net.max_batches){ |
| | | i += 1; |
| | | time=clock(); |
| | | pthread_join(load_thread, 0); |
| | |
| | | load_thread = load_data_in_thread(args); |
| | | |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | |
| | | time=clock(); |
| | | float loss = train_network(net, train); |
| | | net.seen += imgs; |
| | | if (avg_loss < 0) avg_loss = loss; |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | |
| | | printf("%d: %f, %f avg, %lf seconds, %d images, epoch: %f\n", i, loss, avg_loss, sec(clock()-time), i*imgs, ((float)i)*imgs/N); |
| | | |
| | | if((i-1)*imgs <= N && i*imgs > N){ |
| | | fprintf(stderr, "First stage done\n"); |
| | | net.learning_rate *= 10; |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_first_stage.weights", backup_directory, base); |
| | | save_weights(net, buff); |
| | | } |
| | | |
| | | if((i-1)*imgs <= 80*N && i*imgs > N*80){ |
| | | fprintf(stderr, "Second stage done.\n"); |
| | | net.learning_rate *= .1; |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_second_stage.weights", backup_directory, base); |
| | | save_weights(net, buff); |
| | | net.layers[net.n-1].joint = 1; |
| | | net.layers[net.n-1].objectness = 0; |
| | | background = 0; |
| | | |
| | | pthread_join(load_thread, 0); |
| | | free_data(buffer); |
| | | load_thread = load_data_in_thread(args); |
| | | } |
| | | |
| | | if((i-1)*imgs <= 120*N && i*imgs > N*120){ |
| | | fprintf(stderr, "Third stage done.\n"); |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_final.weights", backup_directory, base); |
| | | net.layers[net.n-1].rescore = 1; |
| | | save_weights(net, buff); |
| | | } |
| | | |
| | | if(i%1000==0){ |
| | | printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs); |
| | | if(i%1000==0 || (i < 1000 && i%100 == 0)){ |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); |
| | | save_weights(net, buff); |
| | |
| | | free_data(train); |
| | | } |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_rescore.weights", backup_directory, base); |
| | | sprintf(buff, "%s/%s_final.weights", backup_directory, base); |
| | | save_weights(net, buff); |
| | | } |
| | | |
| | | void convert_yolo_detections(float *predictions, int classes, int objectness, int background, int num_boxes, int w, int h, float thresh, float **probs, box *boxes) |
| | | void convert_yolo_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes, int only_objectness) |
| | | { |
| | | int i,j; |
| | | int per_box = 4+classes+(background || objectness); |
| | | for (i = 0; i < num_boxes*num_boxes; ++i){ |
| | | float scale = 1; |
| | | if(objectness) scale = 1-predictions[i*per_box]; |
| | | int offset = i*per_box+(background||objectness); |
| | | for(j = 0; j < classes; ++j){ |
| | | float prob = scale*predictions[offset+j]; |
| | | probs[i][j] = (prob > thresh) ? prob : 0; |
| | | int i,j,n; |
| | | //int per_cell = 5*num+classes; |
| | | for (i = 0; i < side*side; ++i){ |
| | | int row = i / side; |
| | | int col = i % side; |
| | | for(n = 0; n < num; ++n){ |
| | | int index = i*num + n; |
| | | int p_index = side*side*classes + i*num + n; |
| | | float scale = predictions[p_index]; |
| | | int box_index = side*side*(classes + num) + (i*num + n)*4; |
| | | boxes[index].x = (predictions[box_index + 0] + col) / side * w; |
| | | boxes[index].y = (predictions[box_index + 1] + row) / side * h; |
| | | boxes[index].w = pow(predictions[box_index + 2], (square?2:1)) * w; |
| | | boxes[index].h = pow(predictions[box_index + 3], (square?2:1)) * h; |
| | | for(j = 0; j < classes; ++j){ |
| | | int class_index = i*classes; |
| | | float prob = scale*predictions[class_index+j]; |
| | | probs[index][j] = (prob > thresh) ? prob : 0; |
| | | } |
| | | if(only_objectness){ |
| | | probs[index][0] = scale; |
| | | } |
| | | } |
| | | int row = i / num_boxes; |
| | | int col = i % num_boxes; |
| | | offset += classes; |
| | | boxes[i].x = (predictions[offset + 0] + col) / num_boxes * w; |
| | | boxes[i].y = (predictions[offset + 1] + row) / num_boxes * h; |
| | | boxes[i].w = pow(predictions[offset + 2], 2) * w; |
| | | boxes[i].h = pow(predictions[offset + 3], 2) * h; |
| | | } |
| | | } |
| | | |
| | | void print_yolo_detections(FILE **fps, char *id, box *boxes, float **probs, int num_boxes, int classes, int w, int h) |
| | | void print_yolo_detections(FILE **fps, char *id, box *boxes, float **probs, int total, int classes, int w, int h) |
| | | { |
| | | int i, j; |
| | | for(i = 0; i < num_boxes*num_boxes; ++i){ |
| | | for(i = 0; i < total; ++i){ |
| | | float xmin = boxes[i].x - boxes[i].w/2.; |
| | | float xmax = boxes[i].x + boxes[i].w/2.; |
| | | float ymin = boxes[i].y - boxes[i].h/2.; |
| | |
| | | load_weights(&net, weightfile); |
| | | } |
| | | set_batch_network(&net, 1); |
| | | detection_layer layer = get_network_detection_layer(net); |
| | | fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | srand(time(0)); |
| | | |
| | | char *base = "results/comp4_det_test_"; |
| | | list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt"); |
| | | //list *plist = get_paths("data/voc.2007.test"); |
| | | list *plist = get_paths("/home/pjreddie/data/voc/2007_test.txt"); |
| | | //list *plist = get_paths("data/voc.2012.test"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | |
| | | int classes = layer.classes; |
| | | int objectness = layer.objectness; |
| | | int background = layer.background; |
| | | int num_boxes = sqrt(get_detection_layer_locations(layer)); |
| | | layer l = net.layers[net.n-1]; |
| | | int classes = l.classes; |
| | | int square = l.sqrt; |
| | | int side = l.side; |
| | | |
| | | int j; |
| | | FILE **fps = calloc(classes, sizeof(FILE *)); |
| | | for(j = 0; j < classes; ++j){ |
| | | char buff[1024]; |
| | | snprintf(buff, 1024, "%s%s.txt", base, voc_class_names[j]); |
| | | snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]); |
| | | fps[j] = fopen(buff, "w"); |
| | | } |
| | | box *boxes = calloc(num_boxes*num_boxes, sizeof(box)); |
| | | float **probs = calloc(num_boxes*num_boxes, sizeof(float *)); |
| | | for(j = 0; j < num_boxes*num_boxes; ++j) probs[j] = calloc(classes, sizeof(float *)); |
| | | box *boxes = calloc(side*side*l.n, sizeof(box)); |
| | | float **probs = calloc(side*side*l.n, sizeof(float *)); |
| | | for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *)); |
| | | |
| | | int m = plist->size; |
| | | int i=0; |
| | |
| | | int nms = 1; |
| | | float iou_thresh = .5; |
| | | |
| | | int nthreads = 8; |
| | | int nthreads = 2; |
| | | image *val = calloc(nthreads, sizeof(image)); |
| | | image *val_resized = calloc(nthreads, sizeof(image)); |
| | | image *buf = calloc(nthreads, sizeof(image)); |
| | |
| | | float *predictions = network_predict(net, X); |
| | | int w = val[t].w; |
| | | int h = val[t].h; |
| | | convert_yolo_detections(predictions, classes, objectness, background, num_boxes, w, h, thresh, probs, boxes); |
| | | if (nms) do_nms(boxes, probs, num_boxes, classes, iou_thresh); |
| | | print_yolo_detections(fps, id, boxes, probs, num_boxes, classes, w, h); |
| | | convert_yolo_detections(predictions, classes, l.n, square, side, w, h, thresh, probs, boxes, 0); |
| | | if (nms) do_nms_sort(boxes, probs, side*side*l.n, classes, iou_thresh); |
| | | print_yolo_detections(fps, id, boxes, probs, side*side*l.n, classes, w, h); |
| | | free(id); |
| | | free_image(val[t]); |
| | | free_image(val_resized[t]); |
| | |
| | | fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start)); |
| | | } |
| | | |
| | | void validate_yolo_recall(char *cfgfile, char *weightfile) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | set_batch_network(&net, 1); |
| | | fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | srand(time(0)); |
| | | |
| | | char *base = "results/comp4_det_test_"; |
| | | list *plist = get_paths("data/voc.2007.test"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | |
| | | layer l = net.layers[net.n-1]; |
| | | int classes = l.classes; |
| | | int square = l.sqrt; |
| | | int side = l.side; |
| | | |
| | | int j, k; |
| | | FILE **fps = calloc(classes, sizeof(FILE *)); |
| | | for(j = 0; j < classes; ++j){ |
| | | char buff[1024]; |
| | | snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]); |
| | | fps[j] = fopen(buff, "w"); |
| | | } |
| | | box *boxes = calloc(side*side*l.n, sizeof(box)); |
| | | float **probs = calloc(side*side*l.n, sizeof(float *)); |
| | | for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *)); |
| | | |
| | | int m = plist->size; |
| | | int i=0; |
| | | |
| | | float thresh = .001; |
| | | float iou_thresh = .5; |
| | | float nms = 0; |
| | | |
| | | int total = 0; |
| | | int correct = 0; |
| | | int proposals = 0; |
| | | float avg_iou = 0; |
| | | |
| | | for(i = 0; i < m; ++i){ |
| | | char *path = paths[i]; |
| | | image orig = load_image_color(path, 0, 0); |
| | | image sized = resize_image(orig, net.w, net.h); |
| | | char *id = basecfg(path); |
| | | float *predictions = network_predict(net, sized.data); |
| | | convert_yolo_detections(predictions, classes, l.n, square, side, 1, 1, thresh, probs, boxes, 1); |
| | | if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms); |
| | | |
| | | char *labelpath = find_replace(path, "images", "labels"); |
| | | labelpath = find_replace(labelpath, "JPEGImages", "labels"); |
| | | labelpath = find_replace(labelpath, ".jpg", ".txt"); |
| | | labelpath = find_replace(labelpath, ".JPEG", ".txt"); |
| | | |
| | | int num_labels = 0; |
| | | box_label *truth = read_boxes(labelpath, &num_labels); |
| | | for(k = 0; k < side*side*l.n; ++k){ |
| | | if(probs[k][0] > thresh){ |
| | | ++proposals; |
| | | } |
| | | } |
| | | for (j = 0; j < num_labels; ++j) { |
| | | ++total; |
| | | box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h}; |
| | | float best_iou = 0; |
| | | for(k = 0; k < side*side*l.n; ++k){ |
| | | float iou = box_iou(boxes[k], t); |
| | | if(probs[k][0] > thresh && iou > best_iou){ |
| | | best_iou = iou; |
| | | } |
| | | } |
| | | avg_iou += best_iou; |
| | | if(best_iou > iou_thresh){ |
| | | ++correct; |
| | | } |
| | | } |
| | | |
| | | fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total); |
| | | free(id); |
| | | free_image(orig); |
| | | free_image(sized); |
| | | } |
| | | } |
| | | |
| | | void test_yolo(char *cfgfile, char *weightfile, char *filename, float thresh) |
| | | { |
| | | |
| | |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | detection_layer layer = get_network_detection_layer(net); |
| | | detection_layer l = net.layers[net.n-1]; |
| | | set_batch_network(&net, 1); |
| | | srand(2222222); |
| | | clock_t time; |
| | | char input[256]; |
| | | char buff[256]; |
| | | char *input = buff; |
| | | int j; |
| | | float nms=.5; |
| | | box *boxes = calloc(l.side*l.side*l.n, sizeof(box)); |
| | | float **probs = calloc(l.side*l.side*l.n, sizeof(float *)); |
| | | for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *)); |
| | | while(1){ |
| | | if(filename){ |
| | | strncpy(input, filename, 256); |
| | | } else { |
| | | printf("Enter Image Path: "); |
| | | fflush(stdout); |
| | | fgets(input, 256, stdin); |
| | | input = fgets(input, 256, stdin); |
| | | if(!input) return; |
| | | strtok(input, "\n"); |
| | | } |
| | | image im = load_image_color(input,0,0); |
| | |
| | | time=clock(); |
| | | float *predictions = network_predict(net, X); |
| | | printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); |
| | | draw_yolo(im, predictions, 7, layer.objectness, "predictions", thresh); |
| | | convert_yolo_detections(predictions, l.classes, l.n, l.sqrt, l.side, 1, 1, thresh, probs, boxes, 0); |
| | | if (nms) do_nms_sort(boxes, probs, l.side*l.side*l.n, l.classes, nms); |
| | | //draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, voc_names, voc_labels, 20); |
| | | draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, voc_names, voc_labels, 20); |
| | | save_image(im, "predictions"); |
| | | show_image(im, "predictions"); |
| | | |
| | | show_image(sized, "resized"); |
| | | free_image(im); |
| | | free_image(sized); |
| | | #ifdef OPENCV |
| | |
| | | } |
| | | } |
| | | |
| | | void demo_yolo(char *cfgfile, char *weightfile, float thresh, int cam_index, char *filename); |
| | | |
| | | void run_yolo(int argc, char **argv) |
| | | { |
| | | int i; |
| | | for(i = 0; i < 20; ++i){ |
| | | char buff[256]; |
| | | sprintf(buff, "data/labels/%s.png", voc_names[i]); |
| | | voc_labels[i] = load_image_color(buff, 0, 0); |
| | | } |
| | | |
| | | float thresh = find_float_arg(argc, argv, "-thresh", .2); |
| | | int cam_index = find_int_arg(argc, argv, "-c", 0); |
| | | if(argc < 4){ |
| | | fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); |
| | | return; |
| | |
| | | if(0==strcmp(argv[2], "test")) test_yolo(cfg, weights, filename, thresh); |
| | | else if(0==strcmp(argv[2], "train")) train_yolo(cfg, weights); |
| | | else if(0==strcmp(argv[2], "valid")) validate_yolo(cfg, weights); |
| | | else if(0==strcmp(argv[2], "recall")) validate_yolo_recall(cfg, weights); |
| | | else if(0==strcmp(argv[2], "demo")) demo_yolo(cfg, weights, thresh, cam_index, filename); |
| | | } |