| | |
| | | #include "utils.h" |
| | | #include "parser.h" |
| | | #include "option_list.h" |
| | | #include "blas.h" |
| | | #include <sys/time.h> |
| | | |
| | | #ifdef OPENCV |
| | | #include "opencv2/highgui/highgui_c.h" |
| | |
| | | load_args args = {0}; |
| | | args.w = net.w; |
| | | args.h = net.h; |
| | | |
| | | args.min = net.w; |
| | | args.max = net.max_crop; |
| | | args.size = net.w; |
| | | |
| | | args.paths = paths; |
| | | args.classes = classes; |
| | | args.n = imgs; |
| | |
| | | load_thread = load_data_in_thread(args); |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | | |
| | | /* |
| | | int u; |
| | | for(u = 0; u < net.batch; ++u){ |
| | | image im = float_to_image(net.w, net.h, 3, train.X.vals[u]); |
| | | show_image(im, "loaded"); |
| | | cvWaitKey(0); |
| | | } |
| | | */ |
| | | |
| | | float loss = train_network(net, train); |
| | | if(avg_loss == -1) avg_loss = loss; |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | |
| | | sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch); |
| | | save_weights(net, buff); |
| | | } |
| | | if(*net.seen%1000 == 0){ |
| | | if(*net.seen%100 == 0){ |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s.backup",backup_directory,base); |
| | | save_weights(net, buff); |
| | |
| | | char *label_list = option_find_str(options, "labels", "data/labels.list"); |
| | | char *valid_list = option_find_str(options, "valid", "data/train.list"); |
| | | int classes = option_find_int(options, "classes", 2); |
| | | int topk = option_find_int(options, "topk", 1); |
| | | int topk = option_find_int(options, "top", 1); |
| | | |
| | | char **labels = get_labels(label_list); |
| | | list *plist = get_paths(valid_list); |
| | |
| | | clock_t time; |
| | | float avg_acc = 0; |
| | | float avg_topk = 0; |
| | | int splits = 50; |
| | | int splits = m/1000; |
| | | int num = (i+1)*m/splits - i*m/splits; |
| | | |
| | | data val, buffer; |
| | |
| | | load_args args = {0}; |
| | | args.w = net.w; |
| | | args.h = net.h; |
| | | |
| | | args.paths = paths; |
| | | args.classes = classes; |
| | | args.n = num; |
| | | args.m = 0; |
| | | args.labels = labels; |
| | | args.d = &buffer; |
| | | args.type = CLASSIFICATION_DATA; |
| | | args.type = OLD_CLASSIFICATION_DATA; |
| | | |
| | | pthread_t load_thread = load_data_in_thread(args); |
| | | for(i = 1; i <= splits; ++i){ |
| | |
| | | } |
| | | } |
| | | |
| | | void validate_classifier_10(char *datacfg, char *filename, char *weightfile) |
| | | { |
| | | int i, j; |
| | | network net = parse_network_cfg(filename); |
| | | set_batch_network(&net, 1); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | srand(time(0)); |
| | | |
| | | list *options = read_data_cfg(datacfg); |
| | | |
| | | char *label_list = option_find_str(options, "labels", "data/labels.list"); |
| | | char *valid_list = option_find_str(options, "valid", "data/train.list"); |
| | | int classes = option_find_int(options, "classes", 2); |
| | | int topk = option_find_int(options, "top", 1); |
| | | |
| | | char **labels = get_labels(label_list); |
| | | list *plist = get_paths(valid_list); |
| | | |
| | | char **paths = (char **)list_to_array(plist); |
| | | int m = plist->size; |
| | | free_list(plist); |
| | | |
| | | float avg_acc = 0; |
| | | float avg_topk = 0; |
| | | int *indexes = calloc(topk, sizeof(int)); |
| | | |
| | | for(i = 0; i < m; ++i){ |
| | | int class = -1; |
| | | char *path = paths[i]; |
| | | for(j = 0; j < classes; ++j){ |
| | | if(strstr(path, labels[j])){ |
| | | class = j; |
| | | break; |
| | | } |
| | | } |
| | | int w = net.w; |
| | | int h = net.h; |
| | | int shift = 32; |
| | | image im = load_image_color(paths[i], w+shift, h+shift); |
| | | image images[10]; |
| | | images[0] = crop_image(im, -shift, -shift, w, h); |
| | | images[1] = crop_image(im, shift, -shift, w, h); |
| | | images[2] = crop_image(im, 0, 0, w, h); |
| | | images[3] = crop_image(im, -shift, shift, w, h); |
| | | images[4] = crop_image(im, shift, shift, w, h); |
| | | flip_image(im); |
| | | images[5] = crop_image(im, -shift, -shift, w, h); |
| | | images[6] = crop_image(im, shift, -shift, w, h); |
| | | images[7] = crop_image(im, 0, 0, w, h); |
| | | images[8] = crop_image(im, -shift, shift, w, h); |
| | | images[9] = crop_image(im, shift, shift, w, h); |
| | | float *pred = calloc(classes, sizeof(float)); |
| | | for(j = 0; j < 10; ++j){ |
| | | float *p = network_predict(net, images[j].data); |
| | | axpy_cpu(classes, 1, p, 1, pred, 1); |
| | | free_image(images[j]); |
| | | } |
| | | free_image(im); |
| | | top_k(pred, classes, topk, indexes); |
| | | free(pred); |
| | | if(indexes[0] == class) avg_acc += 1; |
| | | for(j = 0; j < topk; ++j){ |
| | | if(indexes[j] == class) avg_topk += 1; |
| | | } |
| | | |
| | | printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1)); |
| | | } |
| | | } |
| | | |
| | | void validate_classifier_full(char *datacfg, char *filename, char *weightfile) |
| | | { |
| | | int i, j; |
| | | network net = parse_network_cfg(filename); |
| | | set_batch_network(&net, 1); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | srand(time(0)); |
| | | |
| | | list *options = read_data_cfg(datacfg); |
| | | |
| | | char *label_list = option_find_str(options, "labels", "data/labels.list"); |
| | | char *valid_list = option_find_str(options, "valid", "data/train.list"); |
| | | int classes = option_find_int(options, "classes", 2); |
| | | int topk = option_find_int(options, "top", 1); |
| | | |
| | | char **labels = get_labels(label_list); |
| | | list *plist = get_paths(valid_list); |
| | | |
| | | char **paths = (char **)list_to_array(plist); |
| | | int m = plist->size; |
| | | free_list(plist); |
| | | |
| | | float avg_acc = 0; |
| | | float avg_topk = 0; |
| | | int *indexes = calloc(topk, sizeof(int)); |
| | | |
| | | int size = net.w; |
| | | for(i = 0; i < m; ++i){ |
| | | int class = -1; |
| | | char *path = paths[i]; |
| | | for(j = 0; j < classes; ++j){ |
| | | if(strstr(path, labels[j])){ |
| | | class = j; |
| | | break; |
| | | } |
| | | } |
| | | image im = load_image_color(paths[i], 0, 0); |
| | | image resized = resize_min(im, size); |
| | | resize_network(&net, resized.w, resized.h); |
| | | //show_image(im, "orig"); |
| | | //show_image(crop, "cropped"); |
| | | //cvWaitKey(0); |
| | | float *pred = network_predict(net, resized.data); |
| | | |
| | | free_image(im); |
| | | free_image(resized); |
| | | top_k(pred, classes, topk, indexes); |
| | | |
| | | if(indexes[0] == class) avg_acc += 1; |
| | | for(j = 0; j < topk; ++j){ |
| | | if(indexes[j] == class) avg_topk += 1; |
| | | } |
| | | |
| | | printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1)); |
| | | } |
| | | } |
| | | |
| | | |
| | | void validate_classifier_single(char *datacfg, char *filename, char *weightfile) |
| | | { |
| | | int i, j; |
| | | network net = parse_network_cfg(filename); |
| | | set_batch_network(&net, 1); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | srand(time(0)); |
| | | |
| | | list *options = read_data_cfg(datacfg); |
| | | |
| | | char *label_list = option_find_str(options, "labels", "data/labels.list"); |
| | | char *valid_list = option_find_str(options, "valid", "data/train.list"); |
| | | int classes = option_find_int(options, "classes", 2); |
| | | int topk = option_find_int(options, "top", 1); |
| | | |
| | | char **labels = get_labels(label_list); |
| | | list *plist = get_paths(valid_list); |
| | | |
| | | char **paths = (char **)list_to_array(plist); |
| | | int m = plist->size; |
| | | free_list(plist); |
| | | |
| | | float avg_acc = 0; |
| | | float avg_topk = 0; |
| | | int *indexes = calloc(topk, sizeof(int)); |
| | | |
| | | for(i = 0; i < m; ++i){ |
| | | int class = -1; |
| | | char *path = paths[i]; |
| | | for(j = 0; j < classes; ++j){ |
| | | if(strstr(path, labels[j])){ |
| | | class = j; |
| | | break; |
| | | } |
| | | } |
| | | image im = load_image_color(paths[i], 0, 0); |
| | | image resized = resize_min(im, net.w); |
| | | image crop = crop_image(resized, (resized.w - net.w)/2, (resized.h - net.h)/2, net.w, net.h); |
| | | //show_image(im, "orig"); |
| | | //show_image(crop, "cropped"); |
| | | //cvWaitKey(0); |
| | | float *pred = network_predict(net, crop.data); |
| | | |
| | | free_image(im); |
| | | free_image(resized); |
| | | free_image(crop); |
| | | top_k(pred, classes, topk, indexes); |
| | | |
| | | if(indexes[0] == class) avg_acc += 1; |
| | | for(j = 0; j < topk; ++j){ |
| | | if(indexes[j] == class) avg_topk += 1; |
| | | } |
| | | |
| | | printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1)); |
| | | } |
| | | } |
| | | |
| | | void validate_classifier_multi(char *datacfg, char *filename, char *weightfile) |
| | | { |
| | | int i, j; |
| | | network net = parse_network_cfg(filename); |
| | | set_batch_network(&net, 1); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | srand(time(0)); |
| | | |
| | | list *options = read_data_cfg(datacfg); |
| | | |
| | | char *label_list = option_find_str(options, "labels", "data/labels.list"); |
| | | char *valid_list = option_find_str(options, "valid", "data/train.list"); |
| | | int classes = option_find_int(options, "classes", 2); |
| | | int topk = option_find_int(options, "top", 1); |
| | | |
| | | char **labels = get_labels(label_list); |
| | | list *plist = get_paths(valid_list); |
| | | int scales[] = {192, 224, 288, 320, 352}; |
| | | int nscales = sizeof(scales)/sizeof(scales[0]); |
| | | |
| | | char **paths = (char **)list_to_array(plist); |
| | | int m = plist->size; |
| | | free_list(plist); |
| | | |
| | | float avg_acc = 0; |
| | | float avg_topk = 0; |
| | | int *indexes = calloc(topk, sizeof(int)); |
| | | |
| | | for(i = 0; i < m; ++i){ |
| | | int class = -1; |
| | | char *path = paths[i]; |
| | | for(j = 0; j < classes; ++j){ |
| | | if(strstr(path, labels[j])){ |
| | | class = j; |
| | | break; |
| | | } |
| | | } |
| | | float *pred = calloc(classes, sizeof(float)); |
| | | image im = load_image_color(paths[i], 0, 0); |
| | | for(j = 0; j < nscales; ++j){ |
| | | image r = resize_min(im, scales[j]); |
| | | resize_network(&net, r.w, r.h); |
| | | float *p = network_predict(net, r.data); |
| | | axpy_cpu(classes, 1, p, 1, pred, 1); |
| | | flip_image(r); |
| | | p = network_predict(net, r.data); |
| | | axpy_cpu(classes, 1, p, 1, pred, 1); |
| | | free_image(r); |
| | | } |
| | | free_image(im); |
| | | top_k(pred, classes, topk, indexes); |
| | | free(pred); |
| | | if(indexes[0] == class) avg_acc += 1; |
| | | for(j = 0; j < topk; ++j){ |
| | | if(indexes[j] == class) avg_topk += 1; |
| | | } |
| | | |
| | | printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1)); |
| | | } |
| | | } |
| | | |
| | | void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | |
| | | |
| | | list *options = read_data_cfg(datacfg); |
| | | |
| | | char *label_list = option_find_str(options, "labels", "data/labels.list"); |
| | | char *name_list = option_find_str(options, "names", 0); |
| | | if(!name_list) name_list = option_find_str(options, "labels", "data/labels.list"); |
| | | int top = option_find_int(options, "top", 1); |
| | | |
| | | int i = 0; |
| | | char **names = get_labels(label_list); |
| | | char **names = get_labels(name_list); |
| | | clock_t time; |
| | | int indexes[10]; |
| | | int *indexes = calloc(top, sizeof(int)); |
| | | char buff[256]; |
| | | char *input = buff; |
| | | while(1){ |
| | |
| | | if(!input) return; |
| | | strtok(input, "\n"); |
| | | } |
| | | image im = load_image_color(input, 256, 256); |
| | | image im = load_image_color(input, net.w, net.h); |
| | | float *X = im.data; |
| | | time=clock(); |
| | | float *predictions = network_predict(net, X); |
| | |
| | | } |
| | | } |
| | | |
| | | void test_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int target_layer) |
| | | void test_classifier(char *datacfg, char *cfgfile, char *weightfile, int target_layer) |
| | | { |
| | | int curr = 0; |
| | | network net = parse_network_cfg(filename); |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | |
| | | list *options = read_data_cfg(datacfg); |
| | | |
| | | char *test_list = option_find_str(options, "test", "data/test.list"); |
| | | char *label_list = option_find_str(options, "labels", "data/labels.list"); |
| | | int classes = option_find_int(options, "classes", 2); |
| | | |
| | | char **labels = get_labels(label_list); |
| | | list *plist = get_paths(test_list); |
| | | |
| | | char **paths = (char **)list_to_array(plist); |
| | |
| | | args.classes = classes; |
| | | args.n = net.batch; |
| | | args.m = 0; |
| | | args.labels = labels; |
| | | args.labels = 0; |
| | | args.d = &buffer; |
| | | args.type = CLASSIFICATION_DATA; |
| | | args.type = OLD_CLASSIFICATION_DATA; |
| | | |
| | | pthread_t load_thread = load_data_in_thread(args); |
| | | for(curr = net.batch; curr < m; curr += net.batch){ |
| | |
| | | |
| | | time=clock(); |
| | | matrix pred = network_predict_data(net, val); |
| | | |
| | | int i; |
| | | |
| | | int i, j; |
| | | if (target_layer >= 0){ |
| | | //layer l = net.layers[target_layer]; |
| | | } |
| | | |
| | | for(i = 0; i < val.X.rows; ++i){ |
| | | |
| | | for(i = 0; i < pred.rows; ++i){ |
| | | printf("%s", paths[curr-net.batch+i]); |
| | | for(j = 0; j < pred.cols; ++j){ |
| | | printf("\t%g", pred.vals[i][j]); |
| | | } |
| | | printf("\n"); |
| | | } |
| | | |
| | | free_matrix(pred); |
| | | |
| | | fprintf(stderr, "%lf seconds, %d images\n", sec(clock()-time), val.X.rows); |
| | | fprintf(stderr, "%lf seconds, %d images, %d total\n", sec(clock()-time), val.X.rows, curr); |
| | | free_data(val); |
| | | } |
| | | } |
| | | |
| | | |
| | | void demo_classifier(char *datacfg, char *cfgfile, char *weightfile, int cam_index, const char *filename) |
| | | { |
| | | #ifdef OPENCV |
| | | printf("Classifier Demo\n"); |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | set_batch_network(&net, 1); |
| | | list *options = read_data_cfg(datacfg); |
| | | |
| | | srand(2222222); |
| | | CvCapture * cap; |
| | | |
| | | if(filename){ |
| | | cap = cvCaptureFromFile(filename); |
| | | }else{ |
| | | cap = cvCaptureFromCAM(cam_index); |
| | | } |
| | | |
| | | int top = option_find_int(options, "top", 1); |
| | | |
| | | char *name_list = option_find_str(options, "names", 0); |
| | | char **names = get_labels(name_list); |
| | | |
| | | int *indexes = calloc(top, sizeof(int)); |
| | | |
| | | if(!cap) error("Couldn't connect to webcam.\n"); |
| | | cvNamedWindow("Classifier", CV_WINDOW_NORMAL); |
| | | cvResizeWindow("Classifier", 512, 512); |
| | | float fps = 0; |
| | | int i; |
| | | |
| | | while(1){ |
| | | struct timeval tval_before, tval_after, tval_result; |
| | | gettimeofday(&tval_before, NULL); |
| | | |
| | | image in = get_image_from_stream(cap); |
| | | image in_s = resize_image(in, net.w, net.h); |
| | | show_image(in, "Classifier"); |
| | | |
| | | float *predictions = network_predict(net, in_s.data); |
| | | top_predictions(net, top, indexes); |
| | | |
| | | printf("\033[2J"); |
| | | printf("\033[1;1H"); |
| | | printf("\nFPS:%.0f\n",fps); |
| | | |
| | | for(i = 0; i < top; ++i){ |
| | | int index = indexes[i]; |
| | | printf("%.1f%%: %s\n", predictions[index]*100, names[index]); |
| | | } |
| | | |
| | | free_image(in_s); |
| | | free_image(in); |
| | | |
| | | cvWaitKey(10); |
| | | |
| | | gettimeofday(&tval_after, NULL); |
| | | timersub(&tval_after, &tval_before, &tval_result); |
| | | float curr = 1000000.f/((long int)tval_result.tv_usec); |
| | | fps = .9*fps + .1*curr; |
| | | } |
| | | #endif |
| | | } |
| | | |
| | | |
| | | void run_classifier(int argc, char **argv) |
| | | { |
| | | if(argc < 4){ |
| | |
| | | return; |
| | | } |
| | | |
| | | int cam_index = find_int_arg(argc, argv, "-c", 0); |
| | | char *data = argv[3]; |
| | | char *cfg = argv[4]; |
| | | char *weights = (argc > 5) ? argv[5] : 0; |
| | |
| | | int layer = layer_s ? atoi(layer_s) : -1; |
| | | if(0==strcmp(argv[2], "predict")) predict_classifier(data, cfg, weights, filename); |
| | | else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights); |
| | | else if(0==strcmp(argv[2], "test")) test_classifier(data, cfg, weights,filename, layer); |
| | | else if(0==strcmp(argv[2], "demo")) demo_classifier(data, cfg, weights, cam_index, filename); |
| | | else if(0==strcmp(argv[2], "test")) test_classifier(data, cfg, weights, layer); |
| | | else if(0==strcmp(argv[2], "valid")) validate_classifier(data, cfg, weights); |
| | | else if(0==strcmp(argv[2], "valid10")) validate_classifier_10(data, cfg, weights); |
| | | else if(0==strcmp(argv[2], "validmulti")) validate_classifier_multi(data, cfg, weights); |
| | | else if(0==strcmp(argv[2], "validsingle")) validate_classifier_single(data, cfg, weights); |
| | | else if(0==strcmp(argv[2], "validfull")) validate_classifier_full(data, cfg, weights); |
| | | } |
| | | |
| | | |