| | |
| | | #include "connected_layer.h" |
| | | //#include "old_conv.h" |
| | | #include "convolutional_layer.h" |
| | | #include "maxpool_layer.h" |
| | | #include "network.h" |
| | |
| | | |
| | | void test_convolve() |
| | | { |
| | | image dog = load_image("dog.jpg",300,400); |
| | | printf("dog channels %d\n", dog.c); |
| | | image kernel = make_random_image(3,3,dog.c); |
| | | image edge = make_image(dog.h, dog.w, 1); |
| | | int i; |
| | | clock_t start = clock(), end; |
| | | for(i = 0; i < 1000; ++i){ |
| | | convolve(dog, kernel, 1, 0, edge, 1); |
| | | } |
| | | end = clock(); |
| | | printf("Convolutions: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC); |
| | | show_image_layers(edge, "Test Convolve"); |
| | | image dog = load_image("dog.jpg",300,400); |
| | | printf("dog channels %d\n", dog.c); |
| | | image kernel = make_random_image(3,3,dog.c); |
| | | image edge = make_image(dog.h, dog.w, 1); |
| | | int i; |
| | | clock_t start = clock(), end; |
| | | for(i = 0; i < 1000; ++i){ |
| | | convolve(dog, kernel, 1, 0, edge, 1); |
| | | } |
| | | end = clock(); |
| | | printf("Convolutions: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC); |
| | | show_image_layers(edge, "Test Convolve"); |
| | | } |
| | | |
| | | void test_convolve_matrix() |
| | | { |
| | | image dog = load_image("dog.jpg",300,400); |
| | | printf("dog channels %d\n", dog.c); |
| | | |
| | | int size = 11; |
| | | int stride = 4; |
| | | int n = 40; |
| | | float *filters = make_random_image(size, size, dog.c*n).data; |
| | | image dog = load_image("dog.jpg",300,400); |
| | | printf("dog channels %d\n", dog.c); |
| | | |
| | | int mw = ((dog.h-size)/stride+1)*((dog.w-size)/stride+1); |
| | | int mh = (size*size*dog.c); |
| | | float *matrix = calloc(mh*mw, sizeof(float)); |
| | | int size = 11; |
| | | int stride = 4; |
| | | int n = 40; |
| | | float *filters = make_random_image(size, size, dog.c*n).data; |
| | | |
| | | image edge = make_image((dog.h-size)/stride+1, (dog.w-size)/stride+1, n); |
| | | int mw = ((dog.h-size)/stride+1)*((dog.w-size)/stride+1); |
| | | int mh = (size*size*dog.c); |
| | | float *matrix = calloc(mh*mw, sizeof(float)); |
| | | |
| | | image edge = make_image((dog.h-size)/stride+1, (dog.w-size)/stride+1, n); |
| | | |
| | | |
| | | int i; |
| | | clock_t start = clock(), end; |
| | | for(i = 0; i < 1000; ++i){ |
| | | im2col_cpu(dog.data, dog.c, dog.h, dog.w, size, stride, matrix); |
| | | gemm(0,0,n,mw,mh,1,filters,mh,matrix,mw,1,edge.data,mw); |
| | | } |
| | | end = clock(); |
| | | printf("Convolutions: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC); |
| | | show_image_layers(edge, "Test Convolve"); |
| | | cvWaitKey(0); |
| | | int i; |
| | | clock_t start = clock(), end; |
| | | for(i = 0; i < 1000; ++i){ |
| | | im2col_cpu(dog.data, dog.c, dog.h, dog.w, size, stride, matrix); |
| | | gemm(0,0,n,mw,mh,1,filters,mh,matrix,mw,1,edge.data,mw); |
| | | } |
| | | end = clock(); |
| | | printf("Convolutions: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC); |
| | | show_image_layers(edge, "Test Convolve"); |
| | | cvWaitKey(0); |
| | | } |
| | | |
| | | void test_color() |
| | | { |
| | | image dog = load_image("test_color.png", 300, 400); |
| | | show_image_layers(dog, "Test Color"); |
| | | image dog = load_image("test_color.png", 300, 400); |
| | | show_image_layers(dog, "Test Color"); |
| | | } |
| | | |
| | | void verify_convolutional_layer() |
| | | { |
| | | srand(0); |
| | | int i; |
| | | int n = 1; |
| | | int stride = 1; |
| | | int size = 3; |
| | | float eps = .00000001; |
| | | image test = make_random_image(5,5, 1); |
| | | convolutional_layer layer = *make_convolutional_layer(test.h,test.w,test.c, n, size, stride, RELU); |
| | | image out = get_convolutional_image(layer); |
| | | float **jacobian = calloc(test.h*test.w*test.c, sizeof(float)); |
| | | |
| | | forward_convolutional_layer(layer, test.data); |
| | | image base = copy_image(out); |
| | | srand(0); |
| | | int i; |
| | | int n = 1; |
| | | int stride = 1; |
| | | int size = 3; |
| | | float eps = .00000001; |
| | | image test = make_random_image(5,5, 1); |
| | | convolutional_layer layer = *make_convolutional_layer(1,test.h,test.w,test.c, n, size, stride, RELU); |
| | | image out = get_convolutional_image(layer); |
| | | float **jacobian = calloc(test.h*test.w*test.c, sizeof(float)); |
| | | |
| | | for(i = 0; i < test.h*test.w*test.c; ++i){ |
| | | test.data[i] += eps; |
| | | forward_convolutional_layer(layer, test.data); |
| | | image partial = copy_image(out); |
| | | subtract_image(partial, base); |
| | | scale_image(partial, 1/eps); |
| | | jacobian[i] = partial.data; |
| | | test.data[i] -= eps; |
| | | } |
| | | float **jacobian2 = calloc(out.h*out.w*out.c, sizeof(float)); |
| | | image in_delta = make_image(test.h, test.w, test.c); |
| | | image out_delta = get_convolutional_delta(layer); |
| | | for(i = 0; i < out.h*out.w*out.c; ++i){ |
| | | out_delta.data[i] = 1; |
| | | backward_convolutional_layer(layer, in_delta.data); |
| | | image partial = copy_image(in_delta); |
| | | jacobian2[i] = partial.data; |
| | | out_delta.data[i] = 0; |
| | | } |
| | | int j; |
| | | float *j1 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(float)); |
| | | float *j2 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(float)); |
| | | for(i = 0; i < test.h*test.w*test.c; ++i){ |
| | | for(j =0 ; j < out.h*out.w*out.c; ++j){ |
| | | j1[i*out.h*out.w*out.c + j] = jacobian[i][j]; |
| | | j2[i*out.h*out.w*out.c + j] = jacobian2[j][i]; |
| | | printf("%f %f\n", jacobian[i][j], jacobian2[j][i]); |
| | | } |
| | | } |
| | | forward_convolutional_layer(layer, test.data); |
| | | image base = copy_image(out); |
| | | |
| | | for(i = 0; i < test.h*test.w*test.c; ++i){ |
| | | test.data[i] += eps; |
| | | forward_convolutional_layer(layer, test.data); |
| | | image partial = copy_image(out); |
| | | subtract_image(partial, base); |
| | | scale_image(partial, 1/eps); |
| | | jacobian[i] = partial.data; |
| | | test.data[i] -= eps; |
| | | } |
| | | float **jacobian2 = calloc(out.h*out.w*out.c, sizeof(float)); |
| | | image in_delta = make_image(test.h, test.w, test.c); |
| | | image out_delta = get_convolutional_delta(layer); |
| | | for(i = 0; i < out.h*out.w*out.c; ++i){ |
| | | out_delta.data[i] = 1; |
| | | backward_convolutional_layer(layer, in_delta.data); |
| | | image partial = copy_image(in_delta); |
| | | jacobian2[i] = partial.data; |
| | | out_delta.data[i] = 0; |
| | | } |
| | | int j; |
| | | float *j1 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(float)); |
| | | float *j2 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(float)); |
| | | for(i = 0; i < test.h*test.w*test.c; ++i){ |
| | | for(j =0 ; j < out.h*out.w*out.c; ++j){ |
| | | j1[i*out.h*out.w*out.c + j] = jacobian[i][j]; |
| | | j2[i*out.h*out.w*out.c + j] = jacobian2[j][i]; |
| | | printf("%f %f\n", jacobian[i][j], jacobian2[j][i]); |
| | | } |
| | | } |
| | | |
| | | |
| | | image mj1 = float_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j1); |
| | | image mj2 = float_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j2); |
| | | printf("%f %f\n", avg_image_layer(mj1,0), avg_image_layer(mj2,0)); |
| | | show_image(mj1, "forward jacobian"); |
| | | show_image(mj2, "backward jacobian"); |
| | | image mj1 = float_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j1); |
| | | image mj2 = float_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j2); |
| | | printf("%f %f\n", avg_image_layer(mj1,0), avg_image_layer(mj2,0)); |
| | | show_image(mj1, "forward jacobian"); |
| | | show_image(mj2, "backward jacobian"); |
| | | } |
| | | |
| | | void test_load() |
| | | { |
| | | image dog = load_image("dog.jpg", 300, 400); |
| | | show_image(dog, "Test Load"); |
| | | show_image_layers(dog, "Test Load"); |
| | | image dog = load_image("dog.jpg", 300, 400); |
| | | show_image(dog, "Test Load"); |
| | | show_image_layers(dog, "Test Load"); |
| | | } |
| | | void test_upsample() |
| | | { |
| | | image dog = load_image("dog.jpg", 300, 400); |
| | | int n = 3; |
| | | image up = make_image(n*dog.h, n*dog.w, dog.c); |
| | | upsample_image(dog, n, up); |
| | | show_image(up, "Test Upsample"); |
| | | show_image_layers(up, "Test Upsample"); |
| | | image dog = load_image("dog.jpg", 300, 400); |
| | | int n = 3; |
| | | image up = make_image(n*dog.h, n*dog.w, dog.c); |
| | | upsample_image(dog, n, up); |
| | | show_image(up, "Test Upsample"); |
| | | show_image_layers(up, "Test Upsample"); |
| | | } |
| | | |
| | | void test_rotate() |
| | | { |
| | | int i; |
| | | image dog = load_image("dog.jpg",300,400); |
| | | clock_t start = clock(), end; |
| | | for(i = 0; i < 1001; ++i){ |
| | | rotate_image(dog); |
| | | } |
| | | end = clock(); |
| | | printf("Rotations: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC); |
| | | show_image(dog, "Test Rotate"); |
| | | int i; |
| | | image dog = load_image("dog.jpg",300,400); |
| | | clock_t start = clock(), end; |
| | | for(i = 0; i < 1001; ++i){ |
| | | rotate_image(dog); |
| | | } |
| | | end = clock(); |
| | | printf("Rotations: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC); |
| | | show_image(dog, "Test Rotate"); |
| | | |
| | | image random = make_random_image(3,3,3); |
| | | show_image(random, "Test Rotate Random"); |
| | | rotate_image(random); |
| | | show_image(random, "Test Rotate Random"); |
| | | rotate_image(random); |
| | | show_image(random, "Test Rotate Random"); |
| | | image random = make_random_image(3,3,3); |
| | | show_image(random, "Test Rotate Random"); |
| | | rotate_image(random); |
| | | show_image(random, "Test Rotate Random"); |
| | | rotate_image(random); |
| | | show_image(random, "Test Rotate Random"); |
| | | } |
| | | |
| | | void test_parser() |
| | | { |
| | | network net = parse_network_cfg("test_parser.cfg"); |
| | | float input[1]; |
| | | int count = 0; |
| | | |
| | | float avgerr = 0; |
| | | while(++count < 100000000){ |
| | | float v = ((float)rand()/RAND_MAX); |
| | | float truth = v*v; |
| | | input[0] = v; |
| | | forward_network(net, input); |
| | | float *out = get_network_output(net); |
| | | float *delta = get_network_delta(net); |
| | | float err = pow((out[0]-truth),2.); |
| | | avgerr = .99 * avgerr + .01 * err; |
| | | if(count % 1000000 == 0) printf("%f %f :%f AVG %f \n", truth, out[0], err, avgerr); |
| | | delta[0] = truth - out[0]; |
| | | backward_network(net, input, &truth); |
| | | update_network(net, .001,0,0); |
| | | } |
| | | network net = parse_network_cfg("test_parser.cfg"); |
| | | float input[1]; |
| | | int count = 0; |
| | | |
| | | float avgerr = 0; |
| | | while(++count < 100000000){ |
| | | float v = ((float)rand()/RAND_MAX); |
| | | float truth = v*v; |
| | | input[0] = v; |
| | | forward_network(net, input); |
| | | float *out = get_network_output(net); |
| | | float *delta = get_network_delta(net); |
| | | float err = pow((out[0]-truth),2.); |
| | | avgerr = .99 * avgerr + .01 * err; |
| | | if(count % 1000000 == 0) printf("%f %f :%f AVG %f \n", truth, out[0], err, avgerr); |
| | | delta[0] = truth - out[0]; |
| | | backward_network(net, input, &truth); |
| | | update_network(net, .001,0,0); |
| | | } |
| | | } |
| | | |
| | | void test_data() |
| | | { |
| | | char *labels[] = {"cat","dog"}; |
| | | data train = load_data_image_pathfile_random("train_paths.txt", 101,labels, 2, 300, 400); |
| | | free_data(train); |
| | | char *labels[] = {"cat","dog"}; |
| | | data train = load_data_image_pathfile_random("train_paths.txt", 101,labels, 2, 300, 400); |
| | | free_data(train); |
| | | } |
| | | |
| | | void train_full() |
| | | { |
| | | network net = parse_network_cfg("cfg/imagenet.cfg"); |
| | | srand(2222222); |
| | | int i = 0; |
| | | char *labels[] = {"cat","dog"}; |
| | | float lr = .00001; |
| | | float momentum = .9; |
| | | float decay = 0.01; |
| | | while(1){ |
| | | i += 1000; |
| | | data train = load_data_image_pathfile_random("images/assira/train.list", 1000, labels, 2, 256, 256); |
| | | //image im = float_to_image(256, 256, 3,train.X.vals[0]); |
| | | //visualize_network(net); |
| | | //cvWaitKey(100); |
| | | //show_image(im, "input"); |
| | | //cvWaitKey(100); |
| | | //scale_data_rows(train, 1./255.); |
| | | normalize_data_rows(train); |
| | | clock_t start = clock(), end; |
| | | float loss = train_network_sgd(net, train, 1000, lr, momentum, decay); |
| | | end = clock(); |
| | | printf("%d: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC, lr, momentum, decay); |
| | | free_data(train); |
| | | if(i%10000==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "cfg/assira_backup_%d.cfg", i); |
| | | save_network(net, buff); |
| | | } |
| | | //lr *= .99; |
| | | } |
| | | } |
| | | |
| | | void test_visualize() |
| | | { |
| | | network net = parse_network_cfg("cfg/voc_imagenet.cfg"); |
| | | srand(2222222); |
| | | visualize_network(net); |
| | | cvWaitKey(0); |
| | | } |
| | | void test_full() |
| | | { |
| | | network net = parse_network_cfg("full.cfg"); |
| | | srand(2222222); |
| | | int i = 800; |
| | | char *labels[] = {"cat","dog"}; |
| | | float lr = .00001; |
| | | float momentum = .9; |
| | | float decay = 0.01; |
| | | while(i++ < 1000 || 1){ |
| | | visualize_network(net); |
| | | cvWaitKey(100); |
| | | data train = load_data_image_pathfile_random("train_paths.txt", 1000, labels, 2, 256, 256); |
| | | image im = float_to_image(256, 256, 3,train.X.vals[0]); |
| | | show_image(im, "input"); |
| | | cvWaitKey(100); |
| | | //scale_data_rows(train, 1./255.); |
| | | normalize_data_rows(train); |
| | | clock_t start = clock(), end; |
| | | float loss = train_network_sgd(net, train, 100, lr, momentum, decay); |
| | | end = clock(); |
| | | printf("%d: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC, lr, momentum, decay); |
| | | free_data(train); |
| | | if(i%100==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "backup_%d.cfg", i); |
| | | //save_network(net, buff); |
| | | } |
| | | //lr *= .99; |
| | | } |
| | | network net = parse_network_cfg("cfg/backup_1300.cfg"); |
| | | srand(2222222); |
| | | int i,j; |
| | | int total = 100; |
| | | char *labels[] = {"cat","dog"}; |
| | | FILE *fp = fopen("preds.txt","w"); |
| | | for(i = 0; i < total; ++i){ |
| | | visualize_network(net); |
| | | cvWaitKey(100); |
| | | data test = load_data_image_pathfile_part("images/assira/test.list", i, total, labels, 2, 256, 256); |
| | | image im = float_to_image(256, 256, 3,test.X.vals[0]); |
| | | show_image(im, "input"); |
| | | cvWaitKey(100); |
| | | normalize_data_rows(test); |
| | | for(j = 0; j < test.X.rows; ++j){ |
| | | float *x = test.X.vals[j]; |
| | | forward_network(net, x); |
| | | int class = get_predicted_class_network(net); |
| | | fprintf(fp, "%d\n", class); |
| | | } |
| | | free_data(test); |
| | | } |
| | | fclose(fp); |
| | | } |
| | | |
| | | void test_cifar10() |
| | | { |
| | | data test = load_cifar10_data("images/cifar10/test_batch.bin"); |
| | | scale_data_rows(test, 1./255); |
| | | network net = parse_network_cfg("cfg/cifar10.cfg"); |
| | | int count = 0; |
| | | float lr = .000005; |
| | | float momentum = .99; |
| | | float decay = 0.001; |
| | | decay = 0; |
| | | int batch = 10000; |
| | | while(++count <= 10000){ |
| | | char buff[256]; |
| | | sprintf(buff, "images/cifar10/data_batch_%d.bin", rand()%5+1); |
| | | data train = load_cifar10_data(buff); |
| | | scale_data_rows(train, 1./255); |
| | | train_network_sgd(net, train, batch, lr, momentum, decay); |
| | | //printf("%5f %5f\n",(double)count*batch/train.X.rows, loss); |
| | | |
| | | float test_acc = network_accuracy(net, test); |
| | | printf("%5f %5f\n",(double)count*batch/train.X.rows/5, 1-test_acc); |
| | | free_data(train); |
| | | } |
| | | |
| | | } |
| | | |
| | | void test_vince() |
| | | { |
| | | network net = parse_network_cfg("cfg/vince.cfg"); |
| | | data train = load_categorical_data_csv("images/vince.txt", 144, 2); |
| | | normalize_data_rows(train); |
| | | |
| | | int count = 0; |
| | | float lr = .00005; |
| | | float momentum = .9; |
| | | float decay = 0.0001; |
| | | decay = 0; |
| | | int batch = 10000; |
| | | while(++count <= 10000){ |
| | | float loss = train_network_sgd(net, train, batch, lr, momentum, decay); |
| | | printf("%5f %5f\n",(double)count*batch/train.X.rows, loss); |
| | | } |
| | | } |
| | | |
| | | void test_nist() |
| | | { |
| | | srand(444444); |
| | | srand(888888); |
| | | network net = parse_network_cfg("nist.cfg"); |
| | | data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10); |
| | | data test = load_categorical_data_csv("mnist/mnist_test.csv",0,10); |
| | | normalize_data_rows(train); |
| | | normalize_data_rows(test); |
| | | //randomize_data(train); |
| | | int count = 0; |
| | | float lr = .0005; |
| | | float momentum = .9; |
| | | float decay = 0.001; |
| | | clock_t start = clock(), end; |
| | | while(++count <= 100){ |
| | | //visualize_network(net); |
| | | float loss = train_network_sgd(net, train, 1000, lr, momentum, decay); |
| | | printf("%5d Training Loss: %lf, Params: %f %f %f, ",count*100, loss, lr, momentum, decay); |
| | | end = clock(); |
| | | printf("Time: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC); |
| | | start=end; |
| | | //cvWaitKey(100); |
| | | //lr /= 2; |
| | | if(count%5 == 0){ |
| | | float train_acc = network_accuracy(net, train); |
| | | fprintf(stderr, "\nTRAIN: %f\n", train_acc); |
| | | float test_acc = network_accuracy(net, test); |
| | | fprintf(stderr, "TEST: %f\n\n", test_acc); |
| | | printf("%d, %f, %f\n", count, train_acc, test_acc); |
| | | //lr *= .5; |
| | | } |
| | | } |
| | | srand(444444); |
| | | srand(888888); |
| | | network net = parse_network_cfg("cfg/nist_basic.cfg"); |
| | | data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10); |
| | | data test = load_categorical_data_csv("mnist/mnist_test.csv",0,10); |
| | | normalize_data_rows(train); |
| | | normalize_data_rows(test); |
| | | //randomize_data(train); |
| | | int count = 0; |
| | | float lr = .00005; |
| | | float momentum = .9; |
| | | float decay = 0.0001; |
| | | decay = 0; |
| | | //clock_t start = clock(), end; |
| | | int batch = 10000; |
| | | while(++count <= 10000){ |
| | | float loss = train_network_sgd(net, train, batch, lr, momentum, decay); |
| | | printf("%5f %5f\n",(double)count*batch/train.X.rows, loss); |
| | | //printf("%5d Training Loss: %lf, Params: %f %f %f, ",count*1000, loss, lr, momentum, decay); |
| | | //end = clock(); |
| | | //printf("Time: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC); |
| | | //start=end; |
| | | /* |
| | | if(count%5 == 0){ |
| | | float train_acc = network_accuracy(net, train); |
| | | fprintf(stderr, "\nTRAIN: %f\n", train_acc); |
| | | float test_acc = network_accuracy(net, test); |
| | | fprintf(stderr, "TEST: %f\n\n", test_acc); |
| | | printf("%d, %f, %f\n", count, train_acc, test_acc); |
| | | //lr *= .5; |
| | | } |
| | | */ |
| | | } |
| | | } |
| | | |
| | | void test_ensemble() |
| | | { |
| | | int i; |
| | | srand(888888); |
| | | data d = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10); |
| | | normalize_data_rows(d); |
| | | data test = load_categorical_data_csv("mnist/mnist_test.csv", 0,10); |
| | | normalize_data_rows(test); |
| | | data train = d; |
| | | // data *split = split_data(d, 1, 10); |
| | | // data train = split[0]; |
| | | // data test = split[1]; |
| | | matrix prediction = make_matrix(test.y.rows, test.y.cols); |
| | | int n = 30; |
| | | for(i = 0; i < n; ++i){ |
| | | int count = 0; |
| | | float lr = .0005; |
| | | float momentum = .9; |
| | | float decay = .01; |
| | | network net = parse_network_cfg("nist.cfg"); |
| | | while(++count <= 15){ |
| | | float acc = train_network_sgd(net, train, train.X.rows, lr, momentum, decay); |
| | | printf("Training Accuracy: %lf Learning Rate: %f Momentum: %f Decay: %f\n", acc, lr, momentum, decay ); |
| | | lr /= 2; |
| | | } |
| | | matrix partial = network_predict_data(net, test); |
| | | float acc = matrix_accuracy(test.y, partial); |
| | | printf("Model Accuracy: %lf\n", acc); |
| | | matrix_add_matrix(partial, prediction); |
| | | acc = matrix_accuracy(test.y, prediction); |
| | | printf("Current Ensemble Accuracy: %lf\n", acc); |
| | | free_matrix(partial); |
| | | } |
| | | float acc = matrix_accuracy(test.y, prediction); |
| | | printf("Full Ensemble Accuracy: %lf\n", acc); |
| | | int i; |
| | | srand(888888); |
| | | data d = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10); |
| | | normalize_data_rows(d); |
| | | data test = load_categorical_data_csv("mnist/mnist_test.csv", 0,10); |
| | | normalize_data_rows(test); |
| | | data train = d; |
| | | // data *split = split_data(d, 1, 10); |
| | | // data train = split[0]; |
| | | // data test = split[1]; |
| | | matrix prediction = make_matrix(test.y.rows, test.y.cols); |
| | | int n = 30; |
| | | for(i = 0; i < n; ++i){ |
| | | int count = 0; |
| | | float lr = .0005; |
| | | float momentum = .9; |
| | | float decay = .01; |
| | | network net = parse_network_cfg("nist.cfg"); |
| | | while(++count <= 15){ |
| | | float acc = train_network_sgd(net, train, train.X.rows, lr, momentum, decay); |
| | | printf("Training Accuracy: %lf Learning Rate: %f Momentum: %f Decay: %f\n", acc, lr, momentum, decay ); |
| | | lr /= 2; |
| | | } |
| | | matrix partial = network_predict_data(net, test); |
| | | float acc = matrix_accuracy(test.y, partial); |
| | | printf("Model Accuracy: %lf\n", acc); |
| | | matrix_add_matrix(partial, prediction); |
| | | acc = matrix_accuracy(test.y, prediction); |
| | | printf("Current Ensemble Accuracy: %lf\n", acc); |
| | | free_matrix(partial); |
| | | } |
| | | float acc = matrix_accuracy(test.y, prediction); |
| | | printf("Full Ensemble Accuracy: %lf\n", acc); |
| | | } |
| | | |
| | | void test_random_classify() |
| | | { |
| | | network net = parse_network_cfg("connected.cfg"); |
| | | matrix m = csv_to_matrix("train.csv"); |
| | | //matrix ho = hold_out_matrix(&m, 2500); |
| | | float *truth = pop_column(&m, 0); |
| | | //float *ho_truth = pop_column(&ho, 0); |
| | | int i; |
| | | clock_t start = clock(), end; |
| | | int count = 0; |
| | | while(++count <= 300){ |
| | | for(i = 0; i < m.rows; ++i){ |
| | | int index = rand()%m.rows; |
| | | //image p = float_to_image(1690,1,1,m.vals[index]); |
| | | //normalize_image(p); |
| | | forward_network(net, m.vals[index]); |
| | | float *out = get_network_output(net); |
| | | float *delta = get_network_delta(net); |
| | | //printf("%f\n", out[0]); |
| | | delta[0] = truth[index] - out[0]; |
| | | // printf("%f\n", delta[0]); |
| | | //printf("%f %f\n", truth[index], out[0]); |
| | | //backward_network(net, m.vals[index], ); |
| | | update_network(net, .00001, 0,0); |
| | | } |
| | | //float test_acc = error_network(net, m, truth); |
| | | //float valid_acc = error_network(net, ho, ho_truth); |
| | | //printf("%f, %f\n", test_acc, valid_acc); |
| | | //fprintf(stderr, "%5d: %f Valid: %f\n",count, test_acc, valid_acc); |
| | | //if(valid_acc > .70) break; |
| | | } |
| | | end = clock(); |
| | | FILE *fp = fopen("submission/out.txt", "w"); |
| | | matrix test = csv_to_matrix("test.csv"); |
| | | truth = pop_column(&test, 0); |
| | | for(i = 0; i < test.rows; ++i){ |
| | | forward_network(net, test.vals[i]); |
| | | float *out = get_network_output(net); |
| | | if(fabs(out[0]) < .5) fprintf(fp, "0\n"); |
| | | else fprintf(fp, "1\n"); |
| | | } |
| | | fclose(fp); |
| | | printf("Neural Net Learning: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC); |
| | | network net = parse_network_cfg("connected.cfg"); |
| | | matrix m = csv_to_matrix("train.csv"); |
| | | //matrix ho = hold_out_matrix(&m, 2500); |
| | | float *truth = pop_column(&m, 0); |
| | | //float *ho_truth = pop_column(&ho, 0); |
| | | int i; |
| | | clock_t start = clock(), end; |
| | | int count = 0; |
| | | while(++count <= 300){ |
| | | for(i = 0; i < m.rows; ++i){ |
| | | int index = rand()%m.rows; |
| | | //image p = float_to_image(1690,1,1,m.vals[index]); |
| | | //normalize_image(p); |
| | | forward_network(net, m.vals[index]); |
| | | float *out = get_network_output(net); |
| | | float *delta = get_network_delta(net); |
| | | //printf("%f\n", out[0]); |
| | | delta[0] = truth[index] - out[0]; |
| | | // printf("%f\n", delta[0]); |
| | | //printf("%f %f\n", truth[index], out[0]); |
| | | //backward_network(net, m.vals[index], ); |
| | | update_network(net, .00001, 0,0); |
| | | } |
| | | //float test_acc = error_network(net, m, truth); |
| | | //float valid_acc = error_network(net, ho, ho_truth); |
| | | //printf("%f, %f\n", test_acc, valid_acc); |
| | | //fprintf(stderr, "%5d: %f Valid: %f\n",count, test_acc, valid_acc); |
| | | //if(valid_acc > .70) break; |
| | | } |
| | | end = clock(); |
| | | FILE *fp = fopen("submission/out.txt", "w"); |
| | | matrix test = csv_to_matrix("test.csv"); |
| | | truth = pop_column(&test, 0); |
| | | for(i = 0; i < test.rows; ++i){ |
| | | forward_network(net, test.vals[i]); |
| | | float *out = get_network_output(net); |
| | | if(fabs(out[0]) < .5) fprintf(fp, "0\n"); |
| | | else fprintf(fp, "1\n"); |
| | | } |
| | | fclose(fp); |
| | | printf("Neural Net Learning: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC); |
| | | } |
| | | |
| | | void test_split() |
| | | { |
| | | data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10); |
| | | data *split = split_data(train, 0, 13); |
| | | printf("%d, %d, %d\n", train.X.rows, split[0].X.rows, split[1].X.rows); |
| | | data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10); |
| | | data *split = split_data(train, 0, 13); |
| | | printf("%d, %d, %d\n", train.X.rows, split[0].X.rows, split[1].X.rows); |
| | | } |
| | | |
| | | void test_im2row() |
| | | { |
| | | int h = 20; |
| | | int w = 20; |
| | | int c = 3; |
| | | int stride = 1; |
| | | int size = 11; |
| | | image test = make_random_image(h,w,c); |
| | | int mc = 1; |
| | | int mw = ((h-size)/stride+1)*((w-size)/stride+1); |
| | | int mh = (size*size*c); |
| | | int msize = mc*mw*mh; |
| | | float *matrix = calloc(msize, sizeof(float)); |
| | | int i; |
| | | for(i = 0; i < 1000; ++i){ |
| | | im2col_cpu(test.data, c, h, w, size, stride, matrix); |
| | | //image render = float_to_image(mh, mw, mc, matrix); |
| | | } |
| | | int h = 20; |
| | | int w = 20; |
| | | int c = 3; |
| | | int stride = 1; |
| | | int size = 11; |
| | | image test = make_random_image(h,w,c); |
| | | int mc = 1; |
| | | int mw = ((h-size)/stride+1)*((w-size)/stride+1); |
| | | int mh = (size*size*c); |
| | | int msize = mc*mw*mh; |
| | | float *matrix = calloc(msize, sizeof(float)); |
| | | int i; |
| | | for(i = 0; i < 1000; ++i){ |
| | | im2col_cpu(test.data, c, h, w, size, stride, matrix); |
| | | //image render = float_to_image(mh, mw, mc, matrix); |
| | | } |
| | | } |
| | | |
| | | void flip_network() |
| | | { |
| | | network net = parse_network_cfg("cfg/voc_imagenet_orig.cfg"); |
| | | save_network(net, "cfg/voc_imagenet_rev.cfg"); |
| | | } |
| | | |
| | | void train_VOC() |
| | | { |
| | | network net = parse_network_cfg("cfg/voc_backup_sig_20.cfg"); |
| | | srand(2222222); |
| | | int i = 20; |
| | | char *labels[] = {"aeroplane","bicycle","bird","boat","bottle","bus","car","cat","chair","cow","diningtable","dog","horse","motorbike","person","pottedplant","sheep","sofa","train","tvmonitor"}; |
| | | float lr = .00001; |
| | | float momentum = .9; |
| | | float decay = 0.01; |
| | | while(i++ < 1000 || 1){ |
| | | data train = load_data_image_pathfile_random("images/VOC2012/train_paths.txt", 1000, labels, 20, 300, 400); |
| | | network net = parse_network_cfg("cfg/voc_start.cfg"); |
| | | srand(2222222); |
| | | int i = 20; |
| | | char *labels[] = {"aeroplane","bicycle","bird","boat","bottle","bus","car","cat","chair","cow","diningtable","dog","horse","motorbike","person","pottedplant","sheep","sofa","train","tvmonitor"}; |
| | | float lr = .00001; |
| | | float momentum = .9; |
| | | float decay = 0.01; |
| | | while(i++ < 1000 || 1){ |
| | | data train = load_data_image_pathfile_random("images/VOC2012/val_paths.txt", 1000, labels, 20, 300, 400); |
| | | |
| | | image im = float_to_image(300, 400, 3,train.X.vals[0]); |
| | | show_image(im, "input"); |
| | | visualize_network(net); |
| | | cvWaitKey(100); |
| | | image im = float_to_image(300, 400, 3,train.X.vals[0]); |
| | | show_image(im, "input"); |
| | | visualize_network(net); |
| | | cvWaitKey(100); |
| | | |
| | | normalize_data_rows(train); |
| | | clock_t start = clock(), end; |
| | | float loss = train_network_sgd(net, train, 1000, lr, momentum, decay); |
| | | end = clock(); |
| | | printf("%d: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC, lr, momentum, decay); |
| | | free_data(train); |
| | | if(i%10==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "cfg/voc_backup_sig_%d.cfg", i); |
| | | save_network(net, buff); |
| | | } |
| | | //lr *= .99; |
| | | } |
| | | normalize_data_rows(train); |
| | | clock_t start = clock(), end; |
| | | float loss = train_network_sgd(net, train, 1000, lr, momentum, decay); |
| | | end = clock(); |
| | | printf("%d: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC, lr, momentum, decay); |
| | | free_data(train); |
| | | if(i%10==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "cfg/voc_clean_ramp_%d.cfg", i); |
| | | save_network(net, buff); |
| | | } |
| | | //lr *= .99; |
| | | } |
| | | } |
| | | |
| | | void features_VOC() |
| | | int voc_size(int x) |
| | | { |
| | | int i,j; |
| | | network net = parse_network_cfg("cfg/voc_features.cfg"); |
| | | char *path_file = "images/VOC2012/all_paths.txt"; |
| | | char *out_dir = "voc_features/"; |
| | | list *paths = get_paths(path_file); |
| | | node *n = paths->front; |
| | | while(n){ |
| | | char *path = (char *)n->val; |
| | | char buff[1024]; |
| | | sprintf(buff, "%s%s.txt",out_dir, path); |
| | | FILE *fp = fopen(buff, "w"); |
| | | if(fp == 0) file_error(buff); |
| | | |
| | | IplImage* src = 0; |
| | | if( (src = cvLoadImage(path,-1)) == 0 ) |
| | | { |
| | | printf("Cannot load file image %s\n", path); |
| | | exit(0); |
| | | } |
| | | |
| | | for(i = 0; i < 10; ++i){ |
| | | int w = 1024 - 90*i; //PICKED WITH CAREFUL CROSS-VALIDATION!!!! |
| | | int h = (int)((double)w/src->width * src->height); |
| | | IplImage *sized = cvCreateImage(cvSize(w,h), src->depth, src->nChannels); |
| | | cvResize(src, sized, CV_INTER_LINEAR); |
| | | image im = ipl_to_image(sized); |
| | | reset_network_size(net, im.h, im.w, im.c); |
| | | forward_network(net, im.data); |
| | | free_image(im); |
| | | image out = get_network_image_layer(net, 5); |
| | | fprintf(fp, "%d, %d, %d\n",out.c, out.h, out.w); |
| | | for(j = 0; j < out.c*out.h*out.w; ++j){ |
| | | if(j != 0)fprintf(fp, ","); |
| | | fprintf(fp, "%g", out.data[j]); |
| | | } |
| | | fprintf(fp, "\n"); |
| | | out.c = 1; |
| | | show_image(out, "output"); |
| | | cvWaitKey(10); |
| | | cvReleaseImage(&sized); |
| | | } |
| | | fclose(fp); |
| | | n = n->next; |
| | | } |
| | | x = x-1+3; |
| | | x = x-1+3; |
| | | x = x-1+3; |
| | | x = (x-1)*2+1; |
| | | x = x-1+5; |
| | | x = (x-1)*2+1; |
| | | x = (x-1)*4+11; |
| | | return x; |
| | | } |
| | | |
| | | int main() |
| | | image features_output_size(network net, IplImage *src, int outh, int outw) |
| | | { |
| | | //feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW); |
| | | int h = voc_size(outh); |
| | | int w = voc_size(outw); |
| | | fprintf(stderr, "%d %d\n", h, w); |
| | | |
| | | //test_blas(); |
| | | //test_convolve_matrix(); |
| | | // test_im2row(); |
| | | //test_split(); |
| | | //test_ensemble(); |
| | | //test_nist(); |
| | | //test_full(); |
| | | //train_VOC(); |
| | | features_VOC(); |
| | | //test_random_preprocess(); |
| | | //test_random_classify(); |
| | | //test_parser(); |
| | | //test_backpropagate(); |
| | | //test_ann(); |
| | | //test_convolve(); |
| | | //test_upsample(); |
| | | //test_rotate(); |
| | | //test_load(); |
| | | //test_network(); |
| | | //test_convolutional_layer(); |
| | | //verify_convolutional_layer(); |
| | | //test_color(); |
| | | //cvWaitKey(0); |
| | | return 0; |
| | | IplImage *sized = cvCreateImage(cvSize(w,h), src->depth, src->nChannels); |
| | | cvResize(src, sized, CV_INTER_LINEAR); |
| | | image im = ipl_to_image(sized); |
| | | //normalize_array(im.data, im.h*im.w*im.c); |
| | | translate_image(im, -144); |
| | | resize_network(net, im.h, im.w, im.c); |
| | | forward_network(net, im.data); |
| | | image out = get_network_image(net); |
| | | free_image(im); |
| | | cvReleaseImage(&sized); |
| | | return copy_image(out); |
| | | } |
| | | |
| | | void features_VOC_image_size(char *image_path, int h, int w) |
| | | { |
| | | int j; |
| | | network net = parse_network_cfg("cfg/voc_imagenet.cfg"); |
| | | fprintf(stderr, "%s\n", image_path); |
| | | |
| | | IplImage* src = 0; |
| | | if( (src = cvLoadImage(image_path,-1)) == 0 ) file_error(image_path); |
| | | image out = features_output_size(net, src, h, w); |
| | | for(j = 0; j < out.c*out.h*out.w; ++j){ |
| | | if(j != 0) printf(","); |
| | | printf("%g", out.data[j]); |
| | | } |
| | | printf("\n"); |
| | | free_image(out); |
| | | cvReleaseImage(&src); |
| | | } |
| | | void visualize_imagenet_topk(char *filename) |
| | | { |
| | | int i,j,k,l; |
| | | int topk = 10; |
| | | network net = parse_network_cfg("cfg/voc_imagenet.cfg"); |
| | | list *plist = get_paths(filename); |
| | | node *n = plist->front; |
| | | int h = voc_size(1), w = voc_size(1); |
| | | int num = get_network_image(net).c; |
| | | image **vizs = calloc(num, sizeof(image*)); |
| | | float **score = calloc(num, sizeof(float *)); |
| | | for(i = 0; i < num; ++i){ |
| | | vizs[i] = calloc(topk, sizeof(image)); |
| | | for(j = 0; j < topk; ++j) vizs[i][j] = make_image(h,w,3); |
| | | score[i] = calloc(topk, sizeof(float)); |
| | | } |
| | | |
| | | int count = 0; |
| | | while(n){ |
| | | ++count; |
| | | char *image_path = (char *)n->val; |
| | | image im = load_image(image_path, 0, 0); |
| | | n = n->next; |
| | | if(im.h < 200 || im.w < 200) continue; |
| | | printf("Processing %dx%d image\n", im.h, im.w); |
| | | resize_network(net, im.h, im.w, im.c); |
| | | //scale_image(im, 1./255); |
| | | translate_image(im, -144); |
| | | forward_network(net, im.data); |
| | | image out = get_network_image(net); |
| | | |
| | | int dh = (im.h - h)/(out.h-1); |
| | | int dw = (im.w - w)/(out.w-1); |
| | | //printf("%d %d\n", dh, dw); |
| | | for(k = 0; k < out.c; ++k){ |
| | | float topv = 0; |
| | | int topi = -1; |
| | | int topj = -1; |
| | | for(i = 0; i < out.h; ++i){ |
| | | for(j = 0; j < out.w; ++j){ |
| | | float val = get_pixel(out, i, j, k); |
| | | if(val > topv){ |
| | | topv = val; |
| | | topi = i; |
| | | topj = j; |
| | | } |
| | | } |
| | | } |
| | | if(topv){ |
| | | image sub = get_sub_image(im, dh*topi, dw*topj, h, w); |
| | | for(l = 0; l < topk; ++l){ |
| | | if(topv > score[k][l]){ |
| | | float swap = score[k][l]; |
| | | score[k][l] = topv; |
| | | topv = swap; |
| | | |
| | | image swapi = vizs[k][l]; |
| | | vizs[k][l] = sub; |
| | | sub = swapi; |
| | | } |
| | | } |
| | | free_image(sub); |
| | | } |
| | | } |
| | | free_image(im); |
| | | if(count%50 == 0){ |
| | | image grid = grid_images(vizs, num, topk); |
| | | //show_image(grid, "IMAGENET Visualization"); |
| | | save_image(grid, "IMAGENET Grid Single Nonorm"); |
| | | free_image(grid); |
| | | } |
| | | } |
| | | //cvWaitKey(0); |
| | | } |
| | | |
| | | void visualize_imagenet_features(char *filename) |
| | | { |
| | | int i,j,k; |
| | | network net = parse_network_cfg("cfg/voc_imagenet.cfg"); |
| | | list *plist = get_paths(filename); |
| | | node *n = plist->front; |
| | | int h = voc_size(1), w = voc_size(1); |
| | | int num = get_network_image(net).c; |
| | | image *vizs = calloc(num, sizeof(image)); |
| | | for(i = 0; i < num; ++i) vizs[i] = make_image(h, w, 3); |
| | | while(n){ |
| | | char *image_path = (char *)n->val; |
| | | image im = load_image(image_path, 0, 0); |
| | | printf("Processing %dx%d image\n", im.h, im.w); |
| | | resize_network(net, im.h, im.w, im.c); |
| | | forward_network(net, im.data); |
| | | image out = get_network_image(net); |
| | | |
| | | int dh = (im.h - h)/h; |
| | | int dw = (im.w - w)/w; |
| | | for(i = 0; i < out.h; ++i){ |
| | | for(j = 0; j < out.w; ++j){ |
| | | image sub = get_sub_image(im, dh*i, dw*j, h, w); |
| | | for(k = 0; k < out.c; ++k){ |
| | | float val = get_pixel(out, i, j, k); |
| | | //printf("%f, ", val); |
| | | image sub_c = copy_image(sub); |
| | | scale_image(sub_c, val); |
| | | add_into_image(sub_c, vizs[k], 0, 0); |
| | | free_image(sub_c); |
| | | } |
| | | free_image(sub); |
| | | } |
| | | } |
| | | //printf("\n"); |
| | | show_images(vizs, 10, "IMAGENET Visualization"); |
| | | cvWaitKey(1000); |
| | | n = n->next; |
| | | } |
| | | cvWaitKey(0); |
| | | } |
| | | |
| | | void visualize_cat() |
| | | { |
| | | network net = parse_network_cfg("cfg/voc_imagenet.cfg"); |
| | | image im = load_image("data/cat.png", 0, 0); |
| | | printf("Processing %dx%d image\n", im.h, im.w); |
| | | resize_network(net, im.h, im.w, im.c); |
| | | forward_network(net, im.data); |
| | | |
| | | image out = get_network_image(net); |
| | | visualize_network(net); |
| | | cvWaitKey(1000); |
| | | cvWaitKey(0); |
| | | } |
| | | |
| | | void features_VOC_image(char *image_file, char *image_dir, char *out_dir, int flip) |
| | | { |
| | | int interval = 4; |
| | | int i,j; |
| | | network net = parse_network_cfg("cfg/voc_imagenet.cfg"); |
| | | char image_path[1024]; |
| | | sprintf(image_path, "%s/%s",image_dir, image_file); |
| | | char out_path[1024]; |
| | | if (flip)sprintf(out_path, "%s%d/%s_r.txt",out_dir, interval, image_file); |
| | | else sprintf(out_path, "%s%d/%s.txt",out_dir, interval, image_file); |
| | | printf("%s\n", image_file); |
| | | FILE *fp = fopen(out_path, "w"); |
| | | if(fp == 0) file_error(out_path); |
| | | |
| | | IplImage* src = 0; |
| | | if( (src = cvLoadImage(image_path,-1)) == 0 ) file_error(image_path); |
| | | if(flip)cvFlip(src, 0, 1); |
| | | int w = src->width; |
| | | int h = src->height; |
| | | int sbin = 8; |
| | | double scale = pow(2., 1./interval); |
| | | int m = (w<h)?w:h; |
| | | int max_scale = 1+floor((double)log((double)m/(5.*sbin))/log(scale)); |
| | | if(max_scale < interval) error("max_scale must be >= interval"); |
| | | image *ims = calloc(max_scale+interval, sizeof(image)); |
| | | |
| | | for(i = 0; i < interval; ++i){ |
| | | double factor = 1./pow(scale, i); |
| | | double ih = round(h*factor); |
| | | double iw = round(w*factor); |
| | | int ex_h = round(ih/4.) - 2; |
| | | int ex_w = round(iw/4.) - 2; |
| | | ims[i] = features_output_size(net, src, ex_h, ex_w); |
| | | |
| | | ih = round(h*factor); |
| | | iw = round(w*factor); |
| | | ex_h = round(ih/8.) - 2; |
| | | ex_w = round(iw/8.) - 2; |
| | | ims[i+interval] = features_output_size(net, src, ex_h, ex_w); |
| | | for(j = i+interval; j < max_scale; j += interval){ |
| | | factor /= 2.; |
| | | ih = round(h*factor); |
| | | iw = round(w*factor); |
| | | ex_h = round(ih/8.) - 2; |
| | | ex_w = round(iw/8.) - 2; |
| | | ims[j+interval] = features_output_size(net, src, ex_h, ex_w); |
| | | } |
| | | } |
| | | for(i = 0; i < max_scale+interval; ++i){ |
| | | image out = ims[i]; |
| | | fprintf(fp, "%d, %d, %d\n",out.c, out.h, out.w); |
| | | for(j = 0; j < out.c*out.h*out.w; ++j){ |
| | | if(j != 0)fprintf(fp, ","); |
| | | float o = out.data[j]; |
| | | if(o < 0) o = 0; |
| | | fprintf(fp, "%g", o); |
| | | } |
| | | fprintf(fp, "\n"); |
| | | free_image(out); |
| | | } |
| | | free(ims); |
| | | fclose(fp); |
| | | cvReleaseImage(&src); |
| | | } |
| | | |
| | | void test_distribution() |
| | | { |
| | | IplImage* img = 0; |
| | | if( (img = cvLoadImage("im_small.jpg",-1)) == 0 ) file_error("im_small.jpg"); |
| | | network net = parse_network_cfg("cfg/voc_features.cfg"); |
| | | int h = img->height/8-2; |
| | | int w = img->width/8-2; |
| | | image out = features_output_size(net, img, h, w); |
| | | int c = out.c; |
| | | out.c = 1; |
| | | show_image(out, "output"); |
| | | out.c = c; |
| | | image input = ipl_to_image(img); |
| | | show_image(input, "input"); |
| | | CvScalar s; |
| | | int i,j; |
| | | image affects = make_image(input.h, input.w, 1); |
| | | int count = 0; |
| | | for(i = 0; i<img->height; i += 1){ |
| | | for(j = 0; j < img->width; j += 1){ |
| | | IplImage *copy = cvCloneImage(img); |
| | | s=cvGet2D(copy,i,j); // get the (i,j) pixel value |
| | | printf("%d/%d\n", count++, img->height*img->width); |
| | | s.val[0]=0; |
| | | s.val[1]=0; |
| | | s.val[2]=0; |
| | | cvSet2D(copy,i,j,s); // set the (i,j) pixel value |
| | | image mod = features_output_size(net, copy, h, w); |
| | | image dist = image_distance(out, mod); |
| | | show_image(affects, "affects"); |
| | | cvWaitKey(1); |
| | | cvReleaseImage(©); |
| | | //affects.data[i*affects.w + j] += dist.data[3*dist.w+5]; |
| | | affects.data[i*affects.w + j] += dist.data[1*dist.w+1]; |
| | | free_image(mod); |
| | | free_image(dist); |
| | | } |
| | | } |
| | | show_image(affects, "Origins"); |
| | | cvWaitKey(0); |
| | | cvWaitKey(0); |
| | | } |
| | | |
| | | |
| | | int main(int argc, char *argv[]) |
| | | { |
| | | //train_full(); |
| | | //test_distribution(); |
| | | //feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW); |
| | | |
| | | //test_blas(); |
| | | //test_visualize(); |
| | | //test_gpu_blas(); |
| | | //test_blas(); |
| | | //test_convolve_matrix(); |
| | | // test_im2row(); |
| | | //test_split(); |
| | | //test_ensemble(); |
| | | //test_nist(); |
| | | //test_cifar10(); |
| | | //test_vince(); |
| | | //test_full(); |
| | | //train_VOC(); |
| | | features_VOC_image(argv[1], argv[2], argv[3], 0); |
| | | features_VOC_image(argv[1], argv[2], argv[3], 1); |
| | | //features_VOC_image_size(argv[1], atoi(argv[2]), atoi(argv[3])); |
| | | //visualize_imagenet_features("data/assira/train.list"); |
| | | //visualize_imagenet_topk("data/VOC2012.list"); |
| | | //visualize_cat(); |
| | | //flip_network(); |
| | | //test_visualize(); |
| | | fprintf(stderr, "Success!\n"); |
| | | //test_random_preprocess(); |
| | | //test_random_classify(); |
| | | //test_parser(); |
| | | //test_backpropagate(); |
| | | //test_ann(); |
| | | //test_convolve(); |
| | | //test_upsample(); |
| | | //test_rotate(); |
| | | //test_load(); |
| | | //test_network(); |
| | | //test_convolutional_layer(); |
| | | //verify_convolutional_layer(); |
| | | //test_color(); |
| | | //cvWaitKey(0); |
| | | return 0; |
| | | } |