| | |
| | | #include <string.h> |
| | | #include <stdlib.h> |
| | | |
| | | #define DOABS 1 |
| | | |
| | | region_layer make_region_layer(int batch, int w, int h, int n, int classes, int coords) |
| | | { |
| | | region_layer l = {0}; |
| | |
| | | l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs); |
| | | #endif |
| | | |
| | | fprintf(stderr, "Region Layer\n"); |
| | | fprintf(stderr, "detection\n"); |
| | | srand(0); |
| | | |
| | | return l; |
| | | } |
| | | |
| | | #define LOG 1 |
| | | void resize_region_layer(layer *l, int w, int h) |
| | | { |
| | | l->w = w; |
| | | l->h = h; |
| | | |
| | | l->outputs = h*w*l->n*(l->classes + l->coords + 1); |
| | | l->inputs = l->outputs; |
| | | |
| | | l->output = realloc(l->output, l->batch*l->outputs*sizeof(float)); |
| | | l->delta = realloc(l->delta, l->batch*l->outputs*sizeof(float)); |
| | | |
| | | #ifdef GPU |
| | | cuda_free(l->delta_gpu); |
| | | cuda_free(l->output_gpu); |
| | | |
| | | l->delta_gpu = cuda_make_array(l->delta, l->batch*l->outputs); |
| | | l->output_gpu = cuda_make_array(l->output, l->batch*l->outputs); |
| | | #endif |
| | | } |
| | | |
| | | box get_region_box(float *x, float *biases, int n, int index, int i, int j, int w, int h) |
| | | { |
| | | box b; |
| | | b.x = (i + .5)/w + x[index + 0] * biases[2*n]; |
| | | b.y = (j + .5)/h + x[index + 1] * biases[2*n + 1]; |
| | | if(LOG){ |
| | | b.x = (i + logistic_activate(x[index + 0])) / w; |
| | | b.y = (j + logistic_activate(x[index + 1])) / h; |
| | | } |
| | | b.x = (i + logistic_activate(x[index + 0])) / w; |
| | | b.y = (j + logistic_activate(x[index + 1])) / h; |
| | | b.w = exp(x[index + 2]) * biases[2*n]; |
| | | b.h = exp(x[index + 3]) * biases[2*n+1]; |
| | | if(DOABS){ |
| | | b.w = exp(x[index + 2]) * biases[2*n] / w; |
| | | b.h = exp(x[index + 3]) * biases[2*n+1] / h; |
| | | } |
| | | return b; |
| | | } |
| | | |
| | |
| | | box pred = get_region_box(x, biases, n, index, i, j, w, h); |
| | | float iou = box_iou(pred, truth); |
| | | |
| | | float tx = (truth.x - (i + .5)/w) / biases[2*n]; |
| | | float ty = (truth.y - (j + .5)/h) / biases[2*n + 1]; |
| | | if(LOG){ |
| | | tx = (truth.x*w - i); |
| | | ty = (truth.y*h - j); |
| | | } |
| | | float tx = (truth.x*w - i); |
| | | float ty = (truth.y*h - j); |
| | | float tw = log(truth.w / biases[2*n]); |
| | | float th = log(truth.h / biases[2*n + 1]); |
| | | |
| | | delta[index + 0] = scale * (tx - x[index + 0]); |
| | | delta[index + 1] = scale * (ty - x[index + 1]); |
| | | if(LOG){ |
| | | delta[index + 0] = scale * (tx - logistic_activate(x[index + 0])) * logistic_gradient(logistic_activate(x[index + 0])); |
| | | delta[index + 1] = scale * (ty - logistic_activate(x[index + 1])) * logistic_gradient(logistic_activate(x[index + 1])); |
| | | if(DOABS){ |
| | | tw = log(truth.w*w / biases[2*n]); |
| | | th = log(truth.h*h / biases[2*n + 1]); |
| | | } |
| | | |
| | | delta[index + 0] = scale * (tx - logistic_activate(x[index + 0])) * logistic_gradient(logistic_activate(x[index + 0])); |
| | | delta[index + 1] = scale * (ty - logistic_activate(x[index + 1])) * logistic_gradient(logistic_activate(x[index + 1])); |
| | | delta[index + 2] = scale * (tw - x[index + 2]); |
| | | delta[index + 3] = scale * (th - x[index + 3]); |
| | | return iou; |
| | |
| | | int i,j,b,t,n; |
| | | int size = l.coords + l.classes + 1; |
| | | memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float)); |
| | | reorg(l.output, l.w*l.h, size*l.n, l.batch, 1); |
| | | #ifndef GPU |
| | | flatten(l.output, l.w*l.h, size*l.n, l.batch, 1); |
| | | #endif |
| | | for (b = 0; b < l.batch; ++b){ |
| | | for(i = 0; i < l.h*l.w*l.n; ++i){ |
| | | int index = size*i + b*l.outputs; |
| | | l.output[index + 4] = logistic_activate(l.output[index + 4]); |
| | | if(l.softmax_tree){ |
| | | } |
| | | } |
| | | |
| | | |
| | | #ifndef GPU |
| | | if (l.softmax_tree){ |
| | | for (b = 0; b < l.batch; ++b){ |
| | | for(i = 0; i < l.h*l.w*l.n; ++i){ |
| | | int index = size*i + b*l.outputs; |
| | | softmax_tree(l.output + index + 5, 1, 0, 1, l.softmax_tree, l.output + index + 5); |
| | | } else if(l.softmax){ |
| | | } |
| | | } |
| | | } else if (l.softmax){ |
| | | for (b = 0; b < l.batch; ++b){ |
| | | for(i = 0; i < l.h*l.w*l.n; ++i){ |
| | | int index = size*i + b*l.outputs; |
| | | softmax(l.output + index + 5, l.classes, 1, l.output + index + 5); |
| | | } |
| | | } |
| | | } |
| | | #endif |
| | | if(!state.train) return; |
| | | memset(l.delta, 0, l.outputs * l.batch * sizeof(float)); |
| | | float avg_iou = 0; |
| | |
| | | int class_count = 0; |
| | | *(l.cost) = 0; |
| | | for (b = 0; b < l.batch; ++b) { |
| | | if(l.softmax_tree){ |
| | | int onlyclass = 0; |
| | | for(t = 0; t < 30; ++t){ |
| | | box truth = float_to_box(state.truth + t*5 + b*l.truths); |
| | | if(!truth.x) break; |
| | | int class = state.truth[t*5 + b*l.truths + 4]; |
| | | float maxp = 0; |
| | | int maxi = 0; |
| | | if(truth.x > 100000 && truth.y > 100000){ |
| | | for(n = 0; n < l.n*l.w*l.h; ++n){ |
| | | int index = size*n + b*l.outputs + 5; |
| | | float scale = l.output[index-1]; |
| | | float p = scale*get_hierarchy_probability(l.output + index, l.softmax_tree, class); |
| | | if(p > maxp){ |
| | | maxp = p; |
| | | maxi = n; |
| | | } |
| | | } |
| | | int index = size*maxi + b*l.outputs + 5; |
| | | delta_region_class(l.output, l.delta, index, class, l.classes, l.softmax_tree, l.class_scale, &avg_cat); |
| | | ++class_count; |
| | | onlyclass = 1; |
| | | break; |
| | | } |
| | | } |
| | | if(onlyclass) continue; |
| | | } |
| | | for (j = 0; j < l.h; ++j) { |
| | | for (i = 0; i < l.w; ++i) { |
| | | for (n = 0; n < l.n; ++n) { |
| | |
| | | truth.y = (j + .5)/l.h; |
| | | truth.w = l.biases[2*n]; |
| | | truth.h = l.biases[2*n+1]; |
| | | if(DOABS){ |
| | | truth.w = l.biases[2*n]/l.w; |
| | | truth.h = l.biases[2*n+1]/l.h; |
| | | } |
| | | delta_region_box(truth, l.output, l.biases, n, index, i, j, l.w, l.h, l.delta, .01); |
| | | //l.delta[index + 0] = .1 * (0 - l.output[index + 0]); |
| | | //l.delta[index + 1] = .1 * (0 - l.output[index + 1]); |
| | | //l.delta[index + 2] = .1 * (0 - l.output[index + 2]); |
| | | //l.delta[index + 3] = .1 * (0 - l.output[index + 3]); |
| | | } |
| | | } |
| | | } |
| | |
| | | if(l.bias_match){ |
| | | pred.w = l.biases[2*n]; |
| | | pred.h = l.biases[2*n+1]; |
| | | if(DOABS){ |
| | | pred.w = l.biases[2*n]/l.w; |
| | | pred.h = l.biases[2*n+1]/l.h; |
| | | } |
| | | } |
| | | //printf("pred: (%f, %f) %f x %f\n", pred.x, pred.y, pred.w, pred.h); |
| | | pred.x = 0; |
| | |
| | | } |
| | | } |
| | | //printf("\n"); |
| | | reorg(l.delta, l.w*l.h, size*l.n, l.batch, 0); |
| | | #ifndef GPU |
| | | flatten(l.delta, l.w*l.h, size*l.n, l.batch, 0); |
| | | #endif |
| | | *(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2); |
| | | printf("Region Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, Avg Recall: %f, count: %d\n", avg_iou/count, avg_cat/class_count, avg_obj/count, avg_anyobj/(l.w*l.h*l.n*l.batch), recall/count, count); |
| | | } |
| | |
| | | axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1); |
| | | } |
| | | |
| | | void get_region_boxes(layer l, int w, int h, float thresh, float **probs, box *boxes, int only_objectness) |
| | | void get_region_boxes(layer l, int w, int h, float thresh, float **probs, box *boxes, int only_objectness, int *map) |
| | | { |
| | | int i,j,n; |
| | | float *predictions = l.output; |
| | |
| | | |
| | | hierarchy_predictions(predictions + class_index, l.classes, l.softmax_tree, 0); |
| | | int found = 0; |
| | | for(j = l.classes - 1; j >= 0; --j){ |
| | | if(!found && predictions[class_index + j] > .5){ |
| | | found = 1; |
| | | } else { |
| | | predictions[class_index + j] = 0; |
| | | if(map){ |
| | | for(j = 0; j < 200; ++j){ |
| | | float prob = scale*predictions[class_index+map[j]]; |
| | | probs[index][j] = (prob > thresh) ? prob : 0; |
| | | } |
| | | float prob = predictions[class_index+j]; |
| | | probs[index][j] = (scale > thresh) ? prob : 0; |
| | | } else { |
| | | for(j = l.classes - 1; j >= 0; --j){ |
| | | if(!found && predictions[class_index + j] > .5){ |
| | | found = 1; |
| | | } else { |
| | | predictions[class_index + j] = 0; |
| | | } |
| | | float prob = predictions[class_index+j]; |
| | | probs[index][j] = (scale > thresh) ? prob : 0; |
| | | } |
| | | } |
| | | }else{ |
| | | } else { |
| | | for(j = 0; j < l.classes; ++j){ |
| | | float prob = scale*predictions[class_index+j]; |
| | | probs[index][j] = (prob > thresh) ? prob : 0; |
| | |
| | | return; |
| | | } |
| | | */ |
| | | flatten_ongpu(state.input, l.h*l.w, l.n*(l.coords + l.classes + 1), l.batch, 1, l.output_gpu); |
| | | if(l.softmax_tree){ |
| | | int i; |
| | | int count = 5; |
| | | for (i = 0; i < l.softmax_tree->groups; ++i) { |
| | | int group_size = l.softmax_tree->group_size[i]; |
| | | softmax_gpu(l.output_gpu+count, group_size, l.classes + 5, l.w*l.h*l.n*l.batch, 1, l.output_gpu + count); |
| | | count += group_size; |
| | | } |
| | | }else if (l.softmax){ |
| | | softmax_gpu(l.output_gpu+5, l.classes, l.classes + 5, l.w*l.h*l.n*l.batch, 1, l.output_gpu + 5); |
| | | } |
| | | |
| | | float *in_cpu = calloc(l.batch*l.inputs, sizeof(float)); |
| | | float *truth_cpu = 0; |
| | |
| | | truth_cpu = calloc(num_truth, sizeof(float)); |
| | | cuda_pull_array(state.truth, truth_cpu, num_truth); |
| | | } |
| | | cuda_pull_array(state.input, in_cpu, l.batch*l.inputs); |
| | | cuda_pull_array(l.output_gpu, in_cpu, l.batch*l.inputs); |
| | | network_state cpu_state = state; |
| | | cpu_state.train = state.train; |
| | | cpu_state.truth = truth_cpu; |
| | | cpu_state.input = in_cpu; |
| | | forward_region_layer(l, cpu_state); |
| | | cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs); |
| | | cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs); |
| | | //cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs); |
| | | free(cpu_state.input); |
| | | if(!state.train) return; |
| | | cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs); |
| | | if(cpu_state.truth) free(cpu_state.truth); |
| | | } |
| | | |
| | | void backward_region_layer_gpu(region_layer l, network_state state) |
| | | { |
| | | axpy_ongpu(l.batch*l.outputs, 1, l.delta_gpu, 1, state.delta, 1); |
| | | //copy_ongpu(l.batch*l.inputs, l.delta_gpu, 1, state.delta, 1); |
| | | flatten_ongpu(l.delta_gpu, l.h*l.w, l.n*(l.coords + l.classes + 1), l.batch, 0, state.delta); |
| | | } |
| | | #endif |
| | | |