| | |
| | | layer->biases = calloc(n, sizeof(double)); |
| | | layer->bias_updates = calloc(n, sizeof(double)); |
| | | layer->bias_momentum = calloc(n, sizeof(double)); |
| | | double scale = 20./(size*size*c); |
| | | double scale = 2./(size*size); |
| | | for(i = 0; i < n; ++i){ |
| | | //layer->biases[i] = rand_normal()*scale + scale; |
| | | layer->biases[i] = 1; |
| | | layer->biases[i] = 0; |
| | | layer->kernels[i] = make_random_kernel(size, c, scale); |
| | | layer->kernel_updates[i] = make_random_kernel(size, c, 0); |
| | | layer->kernel_momentum[i] = make_random_kernel(size, c, 0); |
| | |
| | | out_h = (layer->h - layer->size)/layer->stride+1; |
| | | out_w = (layer->h - layer->size)/layer->stride+1; |
| | | } |
| | | printf("Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n); |
| | | fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n); |
| | | layer->output = calloc(out_h * out_w * n, sizeof(double)); |
| | | layer->delta = calloc(out_h * out_w * n, sizeof(double)); |
| | | layer->upsampled = make_image(h,w,n); |
| | |
| | | } |
| | | } |
| | | |
| | | void learn_convolutional_layer(convolutional_layer layer, double *input) |
| | | void gradient_delta_convolutional_layer(convolutional_layer layer) |
| | | { |
| | | int i; |
| | | image in_image = double_to_image(layer.h, layer.w, layer.c, input); |
| | | image out_delta = get_convolutional_delta(layer); |
| | | image out_image = get_convolutional_image(layer); |
| | | for(i = 0; i < out_image.h*out_image.w*out_image.c; ++i){ |
| | | out_delta.data[i] *= gradient(out_image.data[i], layer.activation); |
| | | } |
| | | } |
| | | |
| | | void learn_convolutional_layer(convolutional_layer layer, double *input) |
| | | { |
| | | int i; |
| | | image in_image = double_to_image(layer.h, layer.w, layer.c, input); |
| | | image out_delta = get_convolutional_delta(layer); |
| | | gradient_delta_convolutional_layer(layer); |
| | | for(i = 0; i < layer.n; ++i){ |
| | | kernel_update(in_image, layer.kernel_updates[i], layer.stride, i, out_delta, layer.edge); |
| | | layer.bias_updates[i] += avg_image_layer(out_delta, i); |
| | | //printf("%30.20lf\n", layer.bias_updates[i]); |
| | | } |
| | | } |
| | | |
| | | void update_convolutional_layer(convolutional_layer layer, double step, double momentum, double decay) |
| | | { |
| | | //step = .01; |
| | | int i,j; |
| | | for(i = 0; i < layer.n; ++i){ |
| | | layer.bias_momentum[i] = step*(layer.bias_updates[i]) |
| | | + momentum*layer.bias_momentum[i]; |
| | | layer.biases[i] += layer.bias_momentum[i]; |
| | | //layer.biases[i] = constrain(layer.biases[i],1.); |
| | | layer.bias_updates[i] = 0; |
| | | int pixels = layer.kernels[i].h*layer.kernels[i].w*layer.kernels[i].c; |
| | | for(j = 0; j < pixels; ++j){ |
| | | layer.kernel_momentum[i].data[j] = step*(layer.kernel_updates[i].data[j] - decay*layer.kernels[i].data[j]) |
| | | + momentum*layer.kernel_momentum[i].data[j]; |
| | | layer.kernels[i].data[j] += layer.kernel_momentum[i].data[j]; |
| | | //layer.kernels[i].data[j] = constrain(layer.kernels[i].data[j], 1.); |
| | | } |
| | | zero_image(layer.kernel_updates[i]); |
| | | } |
| | |
| | | int w_offset = i*(size+border); |
| | | image k = layer.kernels[i]; |
| | | image copy = copy_image(k); |
| | | /* |
| | | printf("Kernel %d - Bias: %f, Channels:",i,layer.biases[i]); |
| | | for(j = 0; j < k.c; ++j){ |
| | | double a = avg_image_layer(k, j); |
| | | printf("%f, ", a); |
| | | } |
| | | printf("\n"); |
| | | */ |
| | | normalize_image(copy); |
| | | for(j = 0; j < k.c; ++j){ |
| | | set_pixel(copy,0,0,j,layer.biases[i]); |
| | |
| | | { |
| | | int i; |
| | | char buff[256]; |
| | | //image vis = make_image(layer.n*layer.size, layer.size*layer.kernels[0].c, 3); |
| | | for(i = 0; i < layer.n; ++i){ |
| | | image k = layer.kernels[i]; |
| | | sprintf(buff, "Kernel %d", i); |