| | |
| | | layer->w = w; |
| | | layer->c = c; |
| | | layer->n = n; |
| | | layer->edge = 1; |
| | | layer->edge = 0; |
| | | layer->stride = stride; |
| | | layer->kernels = calloc(n, sizeof(image)); |
| | | layer->kernel_updates = calloc(n, sizeof(image)); |
| | |
| | | for(i = 0; i < layer.n; ++i){ |
| | | kernel_update(in_image, layer.kernel_updates[i], layer.stride, i, out_delta, layer.edge); |
| | | layer.bias_updates[i] += avg_image_layer(out_delta, i); |
| | | //printf("%30.20lf\n", layer.bias_updates[i]); |
| | | } |
| | | } |
| | | |
| | | void update_convolutional_layer(convolutional_layer layer, double step, double momentum, double decay) |
| | | { |
| | | //step = .01; |
| | | int i,j; |
| | | for(i = 0; i < layer.n; ++i){ |
| | | layer.bias_momentum[i] = step*(layer.bias_updates[i]) |
| | | + momentum*layer.bias_momentum[i]; |
| | | layer.biases[i] += layer.bias_momentum[i]; |
| | | //layer.biases[i] = constrain(layer.biases[i],1.); |
| | | layer.bias_updates[i] = 0; |
| | | int pixels = layer.kernels[i].h*layer.kernels[i].w*layer.kernels[i].c; |
| | | for(j = 0; j < pixels; ++j){ |
| | | layer.kernel_momentum[i].data[j] = step*(layer.kernel_updates[i].data[j] - decay*layer.kernels[i].data[j]) |
| | | + momentum*layer.kernel_momentum[i].data[j]; |
| | | layer.kernels[i].data[j] += layer.kernel_momentum[i].data[j]; |
| | | //layer.kernels[i].data[j] = constrain(layer.kernels[i].data[j], 1.); |
| | | } |
| | | zero_image(layer.kernel_updates[i]); |
| | | } |
| | |
| | | int w_offset = i*(size+border); |
| | | image k = layer.kernels[i]; |
| | | image copy = copy_image(k); |
| | | /* |
| | | printf("Kernel %d - Bias: %f, Channels:",i,layer.biases[i]); |
| | | for(j = 0; j < k.c; ++j){ |
| | | double a = avg_image_layer(k, j); |
| | | printf("%f, ", a); |
| | | } |
| | | printf("\n"); |
| | | */ |
| | | normalize_image(copy); |
| | | for(j = 0; j < k.c; ++j){ |
| | | set_pixel(copy,0,0,j,layer.biases[i]); |
| | |
| | | { |
| | | int i; |
| | | char buff[256]; |
| | | //image vis = make_image(layer.n*layer.size, layer.size*layer.kernels[0].c, 3); |
| | | for(i = 0; i < layer.n; ++i){ |
| | | image k = layer.kernels[i]; |
| | | sprintf(buff, "Kernel %d", i); |