| | |
| | | #include "data.h" |
| | | #include "matrix.h" |
| | | #include "utils.h" |
| | | #include "mini_blas.h" |
| | | |
| | | #include <time.h> |
| | | #include <stdlib.h> |
| | |
| | | void test_convolve() |
| | | { |
| | | image dog = load_image("dog.jpg"); |
| | | //show_image_layers(dog, "Dog"); |
| | | printf("dog channels %d\n", dog.c); |
| | | image kernel = make_random_image(3,3,dog.c); |
| | | image edge = make_image(dog.h, dog.w, 1); |
| | |
| | | show_image_layers(edge, "Test Convolve"); |
| | | } |
| | | |
| | | void test_convolve_matrix() |
| | | { |
| | | image dog = load_image("dog.jpg"); |
| | | printf("dog channels %d\n", dog.c); |
| | | |
| | | int size = 11; |
| | | int stride = 1; |
| | | int n = 40; |
| | | double *filters = make_random_image(size, size, dog.c*n).data; |
| | | |
| | | int mw = ((dog.h-size)/stride+1)*((dog.w-size)/stride+1); |
| | | int mh = (size*size*dog.c); |
| | | double *matrix = calloc(mh*mw, sizeof(double)); |
| | | |
| | | image edge = make_image((dog.h-size)/stride+1, (dog.w-size)/stride+1, n); |
| | | |
| | | |
| | | int i; |
| | | clock_t start = clock(), end; |
| | | for(i = 0; i < 1000; ++i){ |
| | | im2col_cpu(dog.data, dog.c, dog.h, dog.w, size, stride, matrix); |
| | | gemm(0,0,n,mw,mh,1,filters,mh,matrix,mw,1,edge.data,mw); |
| | | } |
| | | end = clock(); |
| | | printf("Convolutions: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC); |
| | | show_image_layers(edge, "Test Convolve"); |
| | | cvWaitKey(0); |
| | | } |
| | | |
| | | void test_color() |
| | | { |
| | | image dog = load_image("test_color.png"); |
| | |
| | | image out_delta = get_convolutional_delta(layer); |
| | | for(i = 0; i < out.h*out.w*out.c; ++i){ |
| | | out_delta.data[i] = 1; |
| | | backward_convolutional_layer2(layer, test.data, in_delta.data); |
| | | backward_convolutional_layer(layer, test.data, in_delta.data); |
| | | image partial = copy_image(in_delta); |
| | | jacobian2[i] = partial.data; |
| | | out_delta.data[i] = 0; |
| | |
| | | int count = 0; |
| | | |
| | | double avgerr = 0; |
| | | while(1){ |
| | | while(++count < 100000000){ |
| | | double v = ((double)rand()/RAND_MAX); |
| | | double truth = v*v; |
| | | input[0] = v; |
| | |
| | | double *delta = get_network_delta(net); |
| | | double err = pow((out[0]-truth),2.); |
| | | avgerr = .99 * avgerr + .01 * err; |
| | | //if(++count % 100000 == 0) printf("%f\n", avgerr); |
| | | if(++count % 1000000 == 0) printf("%f %f :%f AVG %f \n", truth, out[0], err, avgerr); |
| | | if(count % 1000000 == 0) printf("%f %f :%f AVG %f \n", truth, out[0], err, avgerr); |
| | | delta[0] = truth - out[0]; |
| | | learn_network(net, input); |
| | | update_network(net, .001); |
| | | backward_network(net, input, &truth); |
| | | update_network(net, .001,0,0); |
| | | } |
| | | } |
| | | |
| | | void test_data() |
| | | { |
| | | char *labels[] = {"cat","dog"}; |
| | | batch train = random_batch("train_paths.txt", 101,labels, 2); |
| | | show_image(train.images[0], "Test Data Loading"); |
| | | show_image(train.images[100], "Test Data Loading"); |
| | | show_image(train.images[10], "Test Data Loading"); |
| | | free_batch(train); |
| | | data train = load_data_image_pathfile_random("train_paths.txt", 101,labels, 2); |
| | | free_data(train); |
| | | } |
| | | |
| | | void test_full() |
| | |
| | | srand(0); |
| | | int i = 0; |
| | | char *labels[] = {"cat","dog"}; |
| | | double lr = .00001; |
| | | double momentum = .9; |
| | | double decay = 0.01; |
| | | while(i++ < 1000 || 1){ |
| | | batch train = random_batch("train_paths.txt", 1000, labels, 2); |
| | | train_network_batch(net, train); |
| | | free_batch(train); |
| | | data train = load_data_image_pathfile_random("train_paths.txt", 1000, labels, 2); |
| | | train_network(net, train, lr, momentum, decay); |
| | | free_data(train); |
| | | printf("Round %d\n", i); |
| | | } |
| | | } |
| | | |
| | | double error_network(network net, matrix m, double *truth) |
| | | { |
| | | int i; |
| | | int correct = 0; |
| | | for(i = 0; i < m.rows; ++i){ |
| | | forward_network(net, m.vals[i]); |
| | | double *out = get_network_output(net); |
| | | double err = truth[i] - out[0]; |
| | | if(fabs(err) < .5) ++correct; |
| | | } |
| | | return (double)correct/m.rows; |
| | | } |
| | | |
| | | double **one_hot(double *a, int n, int k) |
| | | { |
| | | int i; |
| | | double **t = calloc(n, sizeof(double*)); |
| | | for(i = 0; i < n; ++i){ |
| | | t[i] = calloc(k, sizeof(double)); |
| | | int index = (int)a[i]; |
| | | t[i][index] = 1; |
| | | } |
| | | return t; |
| | | } |
| | | |
| | | void test_nist() |
| | | { |
| | | network net = parse_network_cfg("nist.cfg"); |
| | | matrix m = csv_to_matrix("images/nist_train.csv"); |
| | | matrix ho = hold_out_matrix(&m, 3000); |
| | | double *truth_1d = pop_column(&m, 0); |
| | | double **truth = one_hot(truth_1d, m.rows, 10); |
| | | double *ho_truth_1d = pop_column(&ho, 0); |
| | | double **ho_truth = one_hot(ho_truth_1d, ho.rows, 10); |
| | | int i,j; |
| | | clock_t start = clock(), end; |
| | | srand(444444); |
| | | srand(888888); |
| | | network net = parse_network_cfg("nist_basic.cfg"); |
| | | data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10); |
| | | data test = load_categorical_data_csv("mnist/mnist_test.csv",0,10); |
| | | normalize_data_rows(train); |
| | | normalize_data_rows(test); |
| | | //randomize_data(train); |
| | | int count = 0; |
| | | double lr = .0001; |
| | | while(++count <= 3000000){ |
| | | //lr *= .99; |
| | | int index = 0; |
| | | int correct = 0; |
| | | for(i = 0; i < 1000; ++i){ |
| | | index = rand()%m.rows; |
| | | normalize_array(m.vals[index], 28*28); |
| | | forward_network(net, m.vals[index]); |
| | | double *out = get_network_output(net); |
| | | double *delta = get_network_delta(net); |
| | | int max_i = 0; |
| | | double max = out[0]; |
| | | for(j = 0; j < 10; ++j){ |
| | | delta[j] = truth[index][j]-out[j]; |
| | | if(out[j] > max){ |
| | | max = out[j]; |
| | | max_i = j; |
| | | } |
| | | } |
| | | if(truth[index][max_i]) ++correct; |
| | | learn_network(net, m.vals[index]); |
| | | update_network(net, lr); |
| | | double lr = .0005; |
| | | double momentum = .9; |
| | | double decay = 0.01; |
| | | clock_t start = clock(), end; |
| | | while(++count <= 1000){ |
| | | double acc = train_network_sgd(net, train, 6400, lr, momentum, decay); |
| | | printf("%5d Training Loss: %lf, Params: %f %f %f, ",count*100, 1.-acc, lr, momentum, decay); |
| | | end = clock(); |
| | | printf("Time: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC); |
| | | start=end; |
| | | //visualize_network(net); |
| | | //cvWaitKey(100); |
| | | //lr /= 2; |
| | | if(count%5 == 0 && 0){ |
| | | double train_acc = network_accuracy(net, train); |
| | | fprintf(stderr, "\nTRAIN: %f\n", train_acc); |
| | | double test_acc = network_accuracy(net, test); |
| | | fprintf(stderr, "TEST: %f\n\n", test_acc); |
| | | printf("%d, %f, %f\n", count, train_acc, test_acc); |
| | | } |
| | | print_network(net); |
| | | image input = double_to_image(28,28,1, m.vals[index]); |
| | | show_image(input, "Input"); |
| | | image o = get_network_image(net); |
| | | show_image_collapsed(o, "Output"); |
| | | visualize_network(net); |
| | | cvWaitKey(100); |
| | | //double test_acc = error_network(net, m, truth); |
| | | //double valid_acc = error_network(net, ho, ho_truth); |
| | | //printf("%f, %f\n", test_acc, valid_acc); |
| | | fprintf(stderr, "%5d: %f %f\n",count, (double)correct/1000, lr); |
| | | //if(valid_acc > .70) break; |
| | | } |
| | | end = clock(); |
| | | printf("Neural Net Learning: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC); |
| | | } |
| | | |
| | | void test_ensemble() |
| | | { |
| | | int i; |
| | | srand(888888); |
| | | data d = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10); |
| | | normalize_data_rows(d); |
| | | data test = load_categorical_data_csv("mnist/mnist_test.csv", 0,10); |
| | | normalize_data_rows(test); |
| | | data train = d; |
| | | /* |
| | | data *split = split_data(d, 1, 10); |
| | | data train = split[0]; |
| | | data test = split[1]; |
| | | */ |
| | | matrix prediction = make_matrix(test.y.rows, test.y.cols); |
| | | int n = 30; |
| | | for(i = 0; i < n; ++i){ |
| | | int count = 0; |
| | | double lr = .0005; |
| | | double momentum = .9; |
| | | double decay = .01; |
| | | network net = parse_network_cfg("nist.cfg"); |
| | | while(++count <= 15){ |
| | | double acc = train_network_sgd(net, train, train.X.rows, lr, momentum, decay); |
| | | printf("Training Accuracy: %lf Learning Rate: %f Momentum: %f Decay: %f\n", acc, lr, momentum, decay ); |
| | | lr /= 2; |
| | | } |
| | | matrix partial = network_predict_data(net, test); |
| | | double acc = matrix_accuracy(test.y, partial); |
| | | printf("Model Accuracy: %lf\n", acc); |
| | | matrix_add_matrix(partial, prediction); |
| | | acc = matrix_accuracy(test.y, prediction); |
| | | printf("Current Ensemble Accuracy: %lf\n", acc); |
| | | free_matrix(partial); |
| | | } |
| | | double acc = matrix_accuracy(test.y, prediction); |
| | | printf("Full Ensemble Accuracy: %lf\n", acc); |
| | | } |
| | | |
| | | void test_kernel_update() |
| | |
| | | double delta[] = {.1}; |
| | | double input[] = {.3, .5, .3, .5, .5, .5, .5, .0, .5}; |
| | | double kernel[] = {1,2,3,4,5,6,7,8,9}; |
| | | convolutional_layer layer = *make_convolutional_layer(3, 3, 1, 1, 3, 1, IDENTITY); |
| | | convolutional_layer layer = *make_convolutional_layer(3, 3, 1, 1, 3, 1, LINEAR); |
| | | layer.kernels[0].data = kernel; |
| | | layer.delta = delta; |
| | | learn_convolutional_layer(layer, input); |
| | | print_image(layer.kernels[0]); |
| | | print_image(get_convolutional_delta(layer)); |
| | | print_image(layer.kernel_updates[0]); |
| | | |
| | | |
| | | } |
| | | |
| | | void test_random_classify() |
| | | { |
| | | network net = parse_network_cfg("connected.cfg"); |
| | | matrix m = csv_to_matrix("train.csv"); |
| | | matrix ho = hold_out_matrix(&m, 2500); |
| | | //matrix ho = hold_out_matrix(&m, 2500); |
| | | double *truth = pop_column(&m, 0); |
| | | double *ho_truth = pop_column(&ho, 0); |
| | | //double *ho_truth = pop_column(&ho, 0); |
| | | int i; |
| | | clock_t start = clock(), end; |
| | | int count = 0; |
| | |
| | | double *delta = get_network_delta(net); |
| | | //printf("%f\n", out[0]); |
| | | delta[0] = truth[index] - out[0]; |
| | | // printf("%f\n", delta[0]); |
| | | // printf("%f\n", delta[0]); |
| | | //printf("%f %f\n", truth[index], out[0]); |
| | | learn_network(net, m.vals[index]); |
| | | update_network(net, .00001); |
| | | //backward_network(net, m.vals[index], ); |
| | | update_network(net, .00001, 0,0); |
| | | } |
| | | double test_acc = error_network(net, m, truth); |
| | | double valid_acc = error_network(net, ho, ho_truth); |
| | | printf("%f, %f\n", test_acc, valid_acc); |
| | | fprintf(stderr, "%5d: %f Valid: %f\n",count, test_acc, valid_acc); |
| | | //double test_acc = error_network(net, m, truth); |
| | | //double valid_acc = error_network(net, ho, ho_truth); |
| | | //printf("%f, %f\n", test_acc, valid_acc); |
| | | //fprintf(stderr, "%5d: %f Valid: %f\n",count, test_acc, valid_acc); |
| | | //if(valid_acc > .70) break; |
| | | } |
| | | end = clock(); |
| | |
| | | printf("Neural Net Learning: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC); |
| | | } |
| | | |
| | | void test_random_preprocess() |
| | | void test_split() |
| | | { |
| | | FILE *file = fopen("train.csv", "w"); |
| | | char *labels[] = {"cat","dog"}; |
| | | int i,j,k; |
| | | srand(0); |
| | | network net = parse_network_cfg("convolutional.cfg"); |
| | | for(i = 0; i < 100; ++i){ |
| | | printf("%d\n", i); |
| | | batch part = get_batch("train_paths.txt", i, 100, labels, 2); |
| | | for(j = 0; j < part.n; ++j){ |
| | | forward_network(net, part.images[j].data); |
| | | double *out = get_network_output(net); |
| | | fprintf(file, "%f", part.truth[j][0]); |
| | | for(k = 0; k < get_network_output_size(net); ++k){ |
| | | fprintf(file, ",%f", out[k]); |
| | | } |
| | | fprintf(file, "\n"); |
| | | data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10); |
| | | data *split = split_data(train, 0, 13); |
| | | printf("%d, %d, %d\n", train.X.rows, split[0].X.rows, split[1].X.rows); |
| | | } |
| | | |
| | | double *random_matrix(int rows, int cols) |
| | | { |
| | | int i, j; |
| | | double *m = calloc(rows*cols, sizeof(double)); |
| | | for(i = 0; i < rows; ++i){ |
| | | for(j = 0; j < cols; ++j){ |
| | | m[i*cols+j] = (double)rand()/RAND_MAX; |
| | | } |
| | | free_batch(part); |
| | | } |
| | | return m; |
| | | } |
| | | |
| | | void test_blas() |
| | | { |
| | | int m = 6025, n = 20, k = 11*11*3; |
| | | double *a = random_matrix(m,k); |
| | | double *b = random_matrix(k,n); |
| | | double *c = random_matrix(m,n); |
| | | int i; |
| | | for(i = 0; i<1000; ++i){ |
| | | gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | } |
| | | } |
| | | |
| | | void test_im2row() |
| | | { |
| | | int h = 20; |
| | | int w = 20; |
| | | int c = 3; |
| | | int stride = 1; |
| | | int size = 11; |
| | | image test = make_random_image(h,w,c); |
| | | int mc = 1; |
| | | int mw = ((h-size)/stride+1)*((w-size)/stride+1); |
| | | int mh = (size*size*c); |
| | | int msize = mc*mw*mh; |
| | | double *matrix = calloc(msize, sizeof(double)); |
| | | int i; |
| | | for(i = 0; i < 1000; ++i){ |
| | | im2col_cpu(test.data, c, h, w, size, stride, matrix); |
| | | image render = double_to_image(mh, mw, mc, matrix); |
| | | } |
| | | } |
| | | |
| | | int main() |
| | | { |
| | | //test_blas(); |
| | | //test_convolve_matrix(); |
| | | // test_im2row(); |
| | | //test_kernel_update(); |
| | | //test_nist(); |
| | | test_full(); |
| | | //test_split(); |
| | | //test_ensemble(); |
| | | test_nist(); |
| | | //test_full(); |
| | | //test_random_preprocess(); |
| | | //test_random_classify(); |
| | | //test_parser(); |
| | |
| | | //test_convolutional_layer(); |
| | | //verify_convolutional_layer(); |
| | | //test_color(); |
| | | cvWaitKey(0); |
| | | //cvWaitKey(0); |
| | | return 0; |
| | | } |