| | |
| | | #include "data.h" |
| | | #include "matrix.h" |
| | | #include "utils.h" |
| | | #include "mini_blas.h" |
| | | |
| | | #include <time.h> |
| | | #include <stdlib.h> |
| | |
| | | show_image_layers(edge, "Test Convolve"); |
| | | } |
| | | |
| | | void test_convolve_matrix() |
| | | { |
| | | image dog = load_image("dog.jpg"); |
| | | printf("dog channels %d\n", dog.c); |
| | | |
| | | int size = 11; |
| | | int stride = 1; |
| | | int n = 40; |
| | | double *filters = make_random_image(size, size, dog.c*n).data; |
| | | |
| | | int mw = ((dog.h-size)/stride+1)*((dog.w-size)/stride+1); |
| | | int mh = (size*size*dog.c); |
| | | double *matrix = calloc(mh*mw, sizeof(double)); |
| | | |
| | | image edge = make_image((dog.h-size)/stride+1, (dog.w-size)/stride+1, n); |
| | | |
| | | |
| | | int i; |
| | | clock_t start = clock(), end; |
| | | for(i = 0; i < 1000; ++i){ |
| | | im2col_cpu(dog.data, dog.c, dog.h, dog.w, size, stride, matrix); |
| | | gemm(0,0,n,mw,mh,1,filters,mh,matrix,mw,1,edge.data,mw); |
| | | } |
| | | end = clock(); |
| | | printf("Convolutions: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC); |
| | | show_image_layers(edge, "Test Convolve"); |
| | | cvWaitKey(0); |
| | | } |
| | | |
| | | void test_color() |
| | | { |
| | | image dog = load_image("test_color.png"); |
| | |
| | | srand(0); |
| | | int i = 0; |
| | | char *labels[] = {"cat","dog"}; |
| | | double lr = .00001; |
| | | double momentum = .9; |
| | | double decay = 0.01; |
| | | while(i++ < 1000 || 1){ |
| | | data train = load_data_image_pathfile_random("train_paths.txt", 1000, labels, 2); |
| | | train_network(net, train, .0005, 0, 0); |
| | | train_network(net, train, lr, momentum, decay); |
| | | free_data(train); |
| | | printf("Round %d\n", i); |
| | | } |
| | |
| | | { |
| | | srand(444444); |
| | | srand(888888); |
| | | network net = parse_network_cfg("nist.cfg"); |
| | | network net = parse_network_cfg("nist_basic.cfg"); |
| | | data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10); |
| | | data test = load_categorical_data_csv("mnist/mnist_test.csv",0,10); |
| | | normalize_data_rows(train); |
| | |
| | | double lr = .0005; |
| | | double momentum = .9; |
| | | double decay = 0.01; |
| | | clock_t start = clock(), end; |
| | | while(++count <= 1000){ |
| | | double acc = train_network_sgd(net, train, 1000, lr, momentum, decay); |
| | | printf("Training Accuracy: %lf, Params: %f %f %f\n", acc, lr, momentum, decay); |
| | | visualize_network(net); |
| | | cvWaitKey(100); |
| | | double acc = train_network_sgd(net, train, 6400, lr, momentum, decay); |
| | | printf("%5d Training Loss: %lf, Params: %f %f %f, ",count*100, 1.-acc, lr, momentum, decay); |
| | | end = clock(); |
| | | printf("Time: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC); |
| | | start=end; |
| | | //visualize_network(net); |
| | | //cvWaitKey(100); |
| | | //lr /= 2; |
| | | if(count%5 == 0 && 0){ |
| | | double train_acc = network_accuracy(net, train); |
| | |
| | | printf("%d, %d, %d\n", train.X.rows, split[0].X.rows, split[1].X.rows); |
| | | } |
| | | |
| | | double *random_matrix(int rows, int cols) |
| | | { |
| | | int i, j; |
| | | double *m = calloc(rows*cols, sizeof(double)); |
| | | for(i = 0; i < rows; ++i){ |
| | | for(j = 0; j < cols; ++j){ |
| | | m[i*cols+j] = (double)rand()/RAND_MAX; |
| | | } |
| | | } |
| | | return m; |
| | | } |
| | | |
| | | void test_blas() |
| | | { |
| | | int m = 6025, n = 20, k = 11*11*3; |
| | | double *a = random_matrix(m,k); |
| | | double *b = random_matrix(k,n); |
| | | double *c = random_matrix(m,n); |
| | | int i; |
| | | for(i = 0; i<1000; ++i){ |
| | | gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | } |
| | | } |
| | | |
| | | void test_im2row() |
| | | { |
| | | int h = 20; |
| | | int w = 20; |
| | | int c = 3; |
| | | int stride = 1; |
| | | int size = 11; |
| | | image test = make_random_image(h,w,c); |
| | | int mc = 1; |
| | | int mw = ((h-size)/stride+1)*((w-size)/stride+1); |
| | | int mh = (size*size*c); |
| | | int msize = mc*mw*mh; |
| | | double *matrix = calloc(msize, sizeof(double)); |
| | | int i; |
| | | for(i = 0; i < 1000; ++i){ |
| | | im2col_cpu(test.data, c, h, w, size, stride, matrix); |
| | | image render = double_to_image(mh, mw, mc, matrix); |
| | | } |
| | | } |
| | | |
| | | int main() |
| | | { |
| | | //test_blas(); |
| | | //test_convolve_matrix(); |
| | | // test_im2row(); |
| | | //test_kernel_update(); |
| | | //test_split(); |
| | | test_ensemble(); |
| | | //test_nist(); |
| | | //test_ensemble(); |
| | | test_nist(); |
| | | //test_full(); |
| | | //test_random_preprocess(); |
| | | //test_random_classify(); |