Alexey
2017-04-05 adfafa6ab34ebde2001d9c5d8b5f0ace22bcdede
README.md
@@ -5,9 +5,14 @@
3. [How to train (Pascal VOC Data)](#how-to-train-pascal-voc-data)
4. [How to train (to detect your custom objects)](#how-to-train-to-detect-your-custom-objects)
5. [When should I stop training](#when-should-i-stop-training)
6. [How to mark bounded boxes of objects and create annotation files](#how-to-mark-bounded-boxes-of-objects-and-create-annotation-files)
6. [How to improve object detection](#how-to-improve-object-detection)
7. [How to mark bounded boxes of objects and create annotation files](#how-to-mark-bounded-boxes-of-objects-and-create-annotation-files)
8. [How to use Yolo as DLL](#how-to-use-yolo-as-dll)
|  ![Darknet Logo](http://pjreddie.com/media/files/darknet-black-small.png) |   ![map_fps](https://cloud.githubusercontent.com/assets/4096485/21550284/88f81b8a-ce09-11e6-9516-8c3dd35dfaa7.jpg) https://arxiv.org/abs/1612.08242 |
|  ![Darknet Logo](http://pjreddie.com/media/files/darknet-black-small.png) |   ![map_fps](https://hsto.org/files/a24/21e/068/a2421e0689fb43f08584de9d44c2215f.jpg) https://arxiv.org/abs/1612.08242 |
|---|---|
|  ![Darknet Logo](http://pjreddie.com/media/files/darknet-black-small.png) |   ![map_fps](https://hsto.org/files/978/a64/7ca/978a647caaee40b7b0a64f7770f11e99.jpg) https://arxiv.org/abs/1612.08242 |
|---|---|
@@ -107,7 +112,7 @@
5. If you want to build with CUDNN to speed up then:
      
    * download and install CUDNN: https://developer.nvidia.com/cudnn
    * download and install **cuDNN 5.1 for CUDA 8.0**: https://developer.nvidia.com/cudnn
      
    * add Windows system variable `cudnn` with path to CUDNN: https://hsto.org/files/a49/3dc/fc4/a493dcfc4bd34a1295fd15e0e2e01f26.jpg
      
@@ -131,19 +136,21 @@
`..\..\3rdparty\lib\x64\pthreadVC2.lib;cublas.lib;curand.lib;cudart.lib;cudnn.lib;%(AdditionalDependencies)`
- (right click on project) -> properties -> C/C++ -> Preprocessor -> Preprocessor Definitions
`OPENCV;_TIMESPEC_DEFINED;_CRT_SECURE_NO_WARNINGS;GPU;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)`
- open file: `\src\yolo.c` and change 3 lines to your OpenCV-version - `249` (for 2.4.9), `2413` (for 2.4.13), ... : 
    * `#pragma comment(lib, "opencv_core249.lib")`
    * `#pragma comment(lib, "opencv_imgproc249.lib")`
    * `#pragma comment(lib, "opencv_highgui249.lib")` 
`OPENCV;_TIMESPEC_DEFINED;_CRT_SECURE_NO_WARNINGS;GPU;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)`
- compile to .exe (X64 & Release) and put .dll-s near with .exe:
`pthreadVC2.dll, pthreadGC2.dll` from \3rdparty\dll\x64
`cusolver64_80.dll, curand64_80.dll, cudart64_80.dll, cublas64_80.dll` - 80 for CUDA 8.0 or your version, from C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\bin
`opencv_core249.dll`, `opencv_highgui249.dll` and `opencv_ffmpeg249_64.dll` in `C:\opencv_2.4.9\opencv\build\x64\vc12\bin` or `vc14\bin`
## How to train (Pascal VOC Data):
@@ -291,8 +298,50 @@
| ![Yolo_v2_training](https://hsto.org/files/d12/1e7/515/d121e7515f6a4eb694913f10de5f2b61.jpg) | ![Yolo_v2_training](https://hsto.org/files/727/c7e/5e9/727c7e5e99bf4d4aa34027bb6a5e4bab.jpg) |
|---|---|
## How to improve object detection:
1. Before training:
  * set flag `random=1` in your `.cfg`-file - it will increase precision by training Yolo for different resolutions: [link](https://github.com/AlexeyAB/darknet/blob/47409529d0eb935fa7bafbe2b3484431117269f5/cfg/yolo-voc.cfg#L244)
2. After training - for detection:
  * Increase network-resolution by set in your `.cfg`-file (`height=608` and `width=608`) or (`height=832` and `width=832`) or (any value multiple of 32) - this increases the precision and makes it possible to detect small objects: [link](https://github.com/AlexeyAB/darknet/blob/47409529d0eb935fa7bafbe2b3484431117269f5/cfg/yolo-voc.cfg#L4)
    * you do not need to train the network again, just use `.weights`-file already trained for 416x416 resolution
    * if error `Out of memory` occurs then in `.cfg`-file you should increase `subdivisions=16`, 32 or 64: [link](https://github.com/AlexeyAB/darknet/blob/47409529d0eb935fa7bafbe2b3484431117269f5/cfg/yolo-voc.cfg#L3)
## How to mark bounded boxes of objects and create annotation files:
Here you can find repository with GUI-software for marking bounded boxes of objects and generating annotation files for Yolo v2: https://github.com/AlexeyAB/Yolo_mark
With example of: `train.txt`, `obj.names`, `obj.data`, `yolo-obj.cfg`, `air`1-6`.txt`, `bird`1-4`.txt` for 2 classes of objects (air, bird) and `train_obj.cmd` with example how to train this image-set with Yolo v2
## How to use Yolo as DLL
1. To compile Yolo as C++ DLL-file `yolo_cpp_dll.dll` - open in MSVS2015 file `build\darknet\yolo_cpp_dll.sln`, set **x64** and **Release**, and do the: Build -> Build yolo_cpp_dll
    * You should have installed **CUDA 8.0**
    * To use cuDNN do: (right click on project) -> properties -> C/C++ -> Preprocessor -> Preprocessor Definitions, and add at the beginning of line: `CUDNN;`
2. To use Yolo as DLL-file in your C++ console application - open in MSVS2015 file `build\darknet\yolo_console_dll.sln`, set **x64** and **Release**, and do the: Build -> Build yolo_console_dll
    * you can run your console application from Windows Explorer `build\darknet\x64\yolo_console_dll.exe`
    * or you can run from MSVS2015 (before this - you should copy 2 files `yolo-voc.cfg` and `yolo-voc.weights` to the directory `build\darknet\` )
    * after launching your console application and entering the image file name - you will see info for each object:
    `<obj_id> <left_x> <top_y> <width> <height> <probability>`
    * to use simple OpenCV-GUI you should uncomment line `//#define OPENCV` in `yolo_console_dll.cpp`-file: [link](https://github.com/AlexeyAB/darknet/blob/a6cbaeecde40f91ddc3ea09aa26a03ab5bbf8ba8/src/yolo_console_dll.cpp#L5)
`yolo_cpp_dll.dll`-API: [link](https://github.com/AlexeyAB/darknet/blob/master/src/yolo_v2_class.hpp#L31)
```
class Detector {
public:
   Detector(std::string cfg_filename, std::string weight_filename, int gpu_id = 0);
   ~Detector();
   std::vector<bbox_t> detect(std::string image_filename, float thresh = 0.2);
   std::vector<bbox_t> detect(image_t img, float thresh = 0.2);
#ifdef OPENCV
   std::vector<bbox_t> detect(cv::Mat mat, float thresh = 0.2);
#endif
};
```