| | |
| | | * **GPU with CC >= 3.0**: https://en.wikipedia.org/wiki/CUDA#GPUs_supported |
| | | |
| | | ##### Pre-trained models for different cfg-files can be downloaded from (smaller -> faster & lower quality): |
| | | * `yolov3.cfg` (236 MB COCO **Yolo v3**) - require 4 GB GPU-RAM: https://pjreddie.com/media/files/yolov3.weights |
| | | * `yolov2.cfg` (194 MB COCO Yolo v2) - require 4 GB GPU-RAM: https://pjreddie.com/media/files/yolov2.weights |
| | | * `yolo-voc.cfg` (194 MB VOC Yolo v2) - require 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo-voc.weights |
| | | * `yolov2-tiny.cfg` (43 MB COCO Yolo v2) - require 1 GB GPU-RAM: https://pjreddie.com/media/files/yolov2-tiny.weights |
| | | * `yolov2-tiny-voc.cfg` (60 MB VOC Yolo v2) - require 1 GB GPU-RAM: http://pjreddie.com/media/files/yolov2-tiny-voc.weights |
| | | * `yolo9000.cfg` (186 MB Yolo9000-model) - require 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo9000.weights |
| | | * `yolov3.cfg` (236 MB COCO **Yolo v3**) - requires 4 GB GPU-RAM: https://pjreddie.com/media/files/yolov3.weights |
| | | * `yolov3-tiny.cfg` (34 MB COCO **Yolo v3 tiny**) - requires 1 GB GPU-RAM: https://pjreddie.com/media/files/yolov3-tiny.weights |
| | | * `yolov2.cfg` (194 MB COCO Yolo v2) - requires 4 GB GPU-RAM: https://pjreddie.com/media/files/yolov2.weights |
| | | * `yolo-voc.cfg` (194 MB VOC Yolo v2) - requires 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo-voc.weights |
| | | * `yolov2-tiny.cfg` (43 MB COCO Yolo v2) - requires 1 GB GPU-RAM: https://pjreddie.com/media/files/yolov2-tiny.weights |
| | | * `yolov2-tiny-voc.cfg` (60 MB VOC Yolo v2) - requires 1 GB GPU-RAM: http://pjreddie.com/media/files/yolov2-tiny-voc.weights |
| | | * `yolo9000.cfg` (186 MB Yolo9000-model) - requires 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo9000.weights |
| | | |
| | | Put it near compiled: darknet.exe |
| | | |
| | |
| | | |
| | | On Linux use `./darknet` instead of `darknet.exe`, like this:`./darknet detector test ./cfg/coco.data ./cfg/yolov3.cfg ./yolov3.weights` |
| | | |
| | | * 194 MB COCO-model - image: `darknet.exe detector test data/coco.data yolo.cfg yolo.weights -i 0 -thresh 0.2` |
| | | * Alternative method 194 MB COCO-model - image: `darknet.exe detect yolo.cfg yolo.weights -i 0 -thresh 0.2` |
| | | * **Yolo v3** COCO - image: `darknet.exe detector test data/coco.data cfg/yolov3.cfg yolov3.weights -i 0 -thresh 0.25` |
| | | * Alternative method Yolo v3 COCO - image: `darknet.exe detect cfg/yolov3.cfg yolov3.weights -i 0 -thresh 0.25` |
| | | * Output coordinates of objects: `darknet.exe detector test data/coco.data yolov3.cfg yolov3.weights -thresh 0.25 dog.jpg -ext_output` |
| | | * 194 MB VOC-model - image: `darknet.exe detector test data/voc.data yolo-voc.cfg yolo-voc.weights -i 0` |
| | | * 194 MB COCO-model - video: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights test.mp4 -i 0` |
| | | * 194 MB VOC-model - video: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights test.mp4 -i 0` |
| | | * 194 MB COCO-model - **save result to the file res.avi**: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights test.mp4 -i 0 -out_filename res.avi` |
| | | * 194 MB VOC-model - **save result to the file res.avi**: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights test.mp4 -i 0 -out_filename res.avi` |
| | | * Alternative method 194 MB VOC-model - video: `darknet.exe yolo demo yolo-voc.cfg yolo-voc.weights test.mp4 -i 0` |
| | | * 60 MB VOC-model for video: `darknet.exe detector demo data/voc.data tiny-yolo-voc.cfg tiny-yolo-voc.weights test.mp4 -i 0` |
| | | * 194 MB COCO-model for net-videocam - Smart WebCam: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0` |
| | | * 43 MB VOC-model for video: `darknet.exe detector demo data/coco.data cfg/yolov2-tiny.cfg yolov2-tiny.weights test.mp4 -i 0` |
| | | * **Yolo v3** 236 MB COCO for net-videocam - Smart WebCam: `darknet.exe detector demo data/coco.data cfg/yolov3.cfg yolov3.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0` |
| | | * 194 MB VOC-model for net-videocam - Smart WebCam: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0` |
| | | * 194 MB VOC-model - WebCamera #0: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights -c 0` |
| | | * 186 MB Yolo9000 - image: `darknet.exe detector test cfg/combine9k.data yolo9000.cfg yolo9000.weights` |
| | | * 186 MB Yolo9000 - video: `darknet.exe detector demo cfg/combine9k.data yolo9000.cfg yolo9000.weights test.mp4` |
| | | * Remeber to put data/9k.tree and data/coco9k.map under the same folder of your app if you use the cpp api to build an app |
| | | * To process a list of images `data/train.txt` and save results of detection to `result.txt` use: |
| | | `darknet.exe detector test data/voc.data yolo-voc.cfg yolo-voc.weights -dont_show < data/train.txt > result.txt` |
| | | `darknet.exe detector test data/voc.data yolo-voc.cfg yolo-voc.weights -dont_show -ext_output < data/train.txt > result.txt` |
| | | You can comment this line so that each image does not require pressing the button ESC: https://github.com/AlexeyAB/darknet/blob/6ccb41808caf753feea58ca9df79d6367dedc434/src/detector.c#L509 |
| | | |
| | | ##### For using network video-camera mjpeg-stream with any Android smartphone: |
| | |
| | | Before make, you can set such options in the `Makefile`: [link](https://github.com/AlexeyAB/darknet/blob/9c1b9a2cf6363546c152251be578a21f3c3caec6/Makefile#L1) |
| | | * `GPU=1` to build with CUDA to accelerate by using GPU (CUDA should be in `/usr/local/cuda`) |
| | | * `CUDNN=1` to build with cuDNN v5-v7 to accelerate training by using GPU (cuDNN should be in `/usr/local/cudnn`) |
| | | * `CUDNN_HALF=1` to build for Tensor Cores (on Titan V / Tesla V100 / DGX-2 and later) speedup Detection 3x, Training 2x |
| | | * `OPENCV=1` to build with OpenCV 3.x/2.4.x - allows to detect on video files and video streams from network cameras or web-cams |
| | | * `DEBUG=1` to bould debug version of Yolo |
| | | * `OPENMP=1` to build with OpenMP support to accelerate Yolo by using multi-core CPU |
| | |
| | | |
| | | 4.2 (right click on project) -> properties -> Linker -> General -> Additional Library Directories: `C:\opencv_2.4.13\opencv\build\x64\vc14\lib` |
| | | |
| | | 5. If you have GPU with Tensor Cores (nVidia Titan V / Tesla V100 / DGX-2 and later) speedup Detection 3x, Training 2x: |
| | | `\darknet.sln` -> (right click on project) -> properties -> C/C++ -> Preprocessor -> Preprocessor Definitions, and add here: `CUDNN_HALF;` |
| | | |
| | | ### How to compile (custom): |
| | | |
| | |
| | | https://groups.google.com/d/msg/darknet/NbJqonJBTSY/Te5PfIpuCAAJ |
| | | |
| | | ## How to train (to detect your custom objects): |
| | | Training Yolo v3 |
| | | (to train old Yolo v2 `yolov2-voc.cfg`, `yolov2-tiny-voc.cfg`, `yolo-voc.cfg`, `yolo-voc.2.0.cfg`, ... [click by the link](https://github.com/AlexeyAB/darknet/tree/47c7af1cea5bbdedf1184963355e6418cb8b1b4f#how-to-train-pascal-voc-data)) |
| | | |
| | | Training Yolo v3: |
| | | |
| | | 1. Create file `yolo-obj.cfg` with the same content as in `yolov3.cfg` (or copy `yolov3.cfg` to `yolo-obj.cfg)` and: |
| | | |
| | |
| | | |
| | | 9. After training is complete - get result `yolo-obj_final.weights` from path `build\darknet\x64\backup\` |
| | | |
| | | * After each 1000 iterations you can stop and later start training from this point. For example, after 2000 iterations you can stop training, and later just copy `yolo-obj_2000.weights` from `build\darknet\x64\backup\` to `build\darknet\x64\` and start training using: `darknet.exe detector train data/obj.data yolo-obj.cfg yolo-obj_2000.weights` |
| | | * After each 100 iterations you can stop and later start training from this point. For example, after 2000 iterations you can stop training, and later just copy `yolo-obj_2000.weights` from `build\darknet\x64\backup\` to `build\darknet\x64\` and start training using: `darknet.exe detector train data/obj.data yolo-obj.cfg yolo-obj_2000.weights` |
| | | |
| | | (in the original repository https://github.com/pjreddie/darknet the weights-file is saved only once every 10 000 iterations `if(iterations > 1000)`) |
| | | |
| | | * Also you can get result earlier than all 45000 iterations. |
| | | |
| | |
| | | |
| | | 2. Once training is stopped, you should take some of last `.weights`-files from `darknet\build\darknet\x64\backup` and choose the best of them: |
| | | |
| | | For example, you stopped training after 9000 iterations, but the best result can give one of previous weights (7000, 8000, 9000). It can happen due to overfitting. **Overfitting** - is case when you can detect objects on images from training-dataset, but can't detect ojbects on any others images. You should get weights from **Early Stopping Point**: |
| | | For example, you stopped training after 9000 iterations, but the best result can give one of previous weights (7000, 8000, 9000). It can happen due to overfitting. **Overfitting** - is case when you can detect objects on images from training-dataset, but can't detect objects on any others images. You should get weights from **Early Stopping Point**: |
| | | |
| | |  |
| | | |
| | |
| | | * increase network resolution in your `.cfg`-file (`height=608`, `width=608` or any value multiple of 32) - it will increase precision |
| | | |
| | | * recalculate anchors for your dataset for `width` and `height` from cfg-file: |
| | | `darknet.exe detector calc_anchors data/obj.data -num_of_clusters 9 -width 416 -heigh 416` |
| | | `darknet.exe detector calc_anchors data/obj.data -num_of_clusters 9 -width 416 -height 416` |
| | | then set the same 9 `anchors` in each of 3 `[yolo]`-layers in your cfg-file |
| | | |
| | | * desirable that your training dataset include images with objects at diffrent: scales, rotations, lightings, from different sides, on different backgrounds |
| | | |
| | | * desirable that your training dataset include images with non-labeled objects that you do not want to detect - negative samples without bounded box |
| | | * desirable that your training dataset include images with non-labeled objects that you do not want to detect - negative samples without bounded box (empty `.txt` files) |
| | | |
| | | * for training with a large number of objects in each image, add the parameter `max=200` or higher value in the last layer [region] in your cfg-file |
| | | |