| | |
| | | #include "connected_layer.h" |
| | | #include "utils.h" |
| | | #include "mini_blas.h" |
| | | |
| | | #include <math.h> |
| | | #include <stdio.h> |
| | | #include <stdlib.h> |
| | | #include <string.h> |
| | | |
| | | double activation(double x) |
| | | { |
| | | return x*(x>0); |
| | | } |
| | | |
| | | double gradient(double x) |
| | | { |
| | | return (x>=0); |
| | | } |
| | | |
| | | connected_layer make_connected_layer(int inputs, int outputs) |
| | | connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation, float learning_rate, float momentum, float decay) |
| | | { |
| | | int i; |
| | | connected_layer layer; |
| | | layer.inputs = inputs; |
| | | layer.outputs = outputs; |
| | | connected_layer *layer = calloc(1, sizeof(connected_layer)); |
| | | |
| | | layer.output = calloc(outputs, sizeof(double*)); |
| | | layer->learning_rate = learning_rate; |
| | | layer->momentum = momentum; |
| | | layer->decay = decay; |
| | | |
| | | layer.weight_updates = calloc(inputs*outputs, sizeof(double)); |
| | | layer.weights = calloc(inputs*outputs, sizeof(double)); |
| | | for(i = 0; i < inputs*outputs; ++i) |
| | | layer.weights[i] = .5 - (double)rand()/RAND_MAX; |
| | | layer->inputs = inputs; |
| | | layer->outputs = outputs; |
| | | layer->batch=batch; |
| | | |
| | | layer.bias_updates = calloc(outputs, sizeof(double)); |
| | | layer.biases = calloc(outputs, sizeof(double)); |
| | | for(i = 0; i < outputs; ++i) |
| | | layer.biases[i] = (double)rand()/RAND_MAX; |
| | | layer->output = calloc(batch*outputs, sizeof(float*)); |
| | | layer->delta = calloc(batch*outputs, sizeof(float*)); |
| | | |
| | | layer->weight_updates = calloc(inputs*outputs, sizeof(float)); |
| | | layer->weights = calloc(inputs*outputs, sizeof(float)); |
| | | float scale = 1./inputs; |
| | | scale = .01; |
| | | for(i = 0; i < inputs*outputs; ++i){ |
| | | layer->weights[i] = scale*rand_normal(); |
| | | } |
| | | |
| | | layer->bias_updates = calloc(outputs, sizeof(float)); |
| | | layer->biases = calloc(outputs, sizeof(float)); |
| | | for(i = 0; i < outputs; ++i){ |
| | | layer->biases[i] = .01; |
| | | } |
| | | |
| | | #ifdef GPU |
| | | layer->weights_cl = cl_make_array(layer->weights, inputs*outputs); |
| | | layer->biases_cl = cl_make_array(layer->biases, outputs); |
| | | |
| | | layer->weight_updates_cl = cl_make_array(layer->weight_updates, inputs*outputs); |
| | | layer->bias_updates_cl = cl_make_array(layer->bias_updates, outputs); |
| | | |
| | | layer->output_cl = cl_make_array(layer->output, outputs*batch); |
| | | layer->delta_cl = cl_make_array(layer->delta, outputs*batch); |
| | | #endif |
| | | layer->activation = activation; |
| | | fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs); |
| | | return layer; |
| | | } |
| | | |
| | | void run_connected_layer(double *input, connected_layer layer) |
| | | void update_connected_layer(connected_layer layer) |
| | | { |
| | | int i, j; |
| | | for(i = 0; i < layer.outputs; ++i){ |
| | | layer.output[i] = layer.biases[i]; |
| | | for(j = 0; j < layer.inputs; ++j){ |
| | | layer.output[i] += input[j]*layer.weights[i*layer.outputs + j]; |
| | | } |
| | | layer.output[i] = activation(layer.output[i]); |
| | | } |
| | | axpy_cpu(layer.outputs, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1); |
| | | scal_cpu(layer.outputs, layer.momentum, layer.bias_updates, 1); |
| | | |
| | | axpy_cpu(layer.inputs*layer.outputs, -layer.decay, layer.weights, 1, layer.weight_updates, 1); |
| | | axpy_cpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates, 1, layer.weights, 1); |
| | | scal_cpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates, 1); |
| | | } |
| | | |
| | | void backpropagate_connected_layer(double *input, connected_layer layer) |
| | | void forward_connected_layer(connected_layer layer, float *input) |
| | | { |
| | | int i, j; |
| | | double *old_input = calloc(layer.inputs, sizeof(double)); |
| | | memcpy(old_input, input, layer.inputs*sizeof(double)); |
| | | memset(input, 0, layer.inputs*sizeof(double)); |
| | | |
| | | for(i = 0; i < layer.outputs; ++i){ |
| | | for(j = 0; j < layer.inputs; ++j){ |
| | | input[j] += layer.output[i]*layer.weights[i*layer.outputs + j]; |
| | | } |
| | | int i; |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | copy_cpu(layer.outputs, layer.biases, 1, layer.output + i*layer.outputs, 1); |
| | | } |
| | | for(j = 0; j < layer.inputs; ++j){ |
| | | input[j] = input[j]*gradient(old_input[j]); |
| | | } |
| | | free(old_input); |
| | | int m = layer.batch; |
| | | int k = layer.inputs; |
| | | int n = layer.outputs; |
| | | float *a = input; |
| | | float *b = layer.weights; |
| | | float *c = layer.output; |
| | | gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | activate_array(layer.output, layer.outputs*layer.batch, layer.activation); |
| | | } |
| | | |
| | | void calculate_updates_connected_layer(double *input, connected_layer layer) |
| | | void backward_connected_layer(connected_layer layer, float *input, float *delta) |
| | | { |
| | | int i, j; |
| | | for(i = 0; i < layer.outputs; ++i){ |
| | | layer.bias_updates[i] += layer.output[i]; |
| | | for(j = 0; j < layer.inputs; ++j){ |
| | | layer.weight_updates[i*layer.outputs + j] += layer.output[i]*input[j]; |
| | | } |
| | | int i; |
| | | gradient_array(layer.output, layer.outputs*layer.batch, layer.activation, layer.delta); |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | axpy_cpu(layer.outputs, 1, layer.delta + i*layer.outputs, 1, layer.bias_updates, 1); |
| | | } |
| | | int m = layer.inputs; |
| | | int k = layer.batch; |
| | | int n = layer.outputs; |
| | | float *a = input; |
| | | float *b = layer.delta; |
| | | float *c = layer.weight_updates; |
| | | gemm(1,0,m,n,k,1,a,m,b,n,1,c,n); |
| | | |
| | | m = layer.batch; |
| | | k = layer.outputs; |
| | | n = layer.inputs; |
| | | |
| | | a = layer.delta; |
| | | b = layer.weights; |
| | | c = delta; |
| | | |
| | | if(c) gemm(0,1,m,n,k,1,a,k,b,k,0,c,n); |
| | | } |
| | | |
| | | void update_connected_layer(connected_layer layer, double step) |
| | | #ifdef GPU |
| | | |
| | | void pull_connected_layer(connected_layer layer) |
| | | { |
| | | int i,j; |
| | | for(i = 0; i < layer.outputs; ++i){ |
| | | layer.biases[i] += step*layer.bias_updates[i]; |
| | | for(j = 0; j < layer.inputs; ++j){ |
| | | int index = i*layer.outputs+j; |
| | | layer.weights[index] = layer.weight_updates[index]; |
| | | } |
| | | } |
| | | memset(layer.bias_updates, 0, layer.outputs*sizeof(double)); |
| | | memset(layer.weight_updates, 0, layer.outputs*layer.inputs*sizeof(double)); |
| | | cl_read_array(layer.weights_cl, layer.weights, layer.inputs*layer.outputs); |
| | | cl_read_array(layer.biases_cl, layer.biases, layer.outputs); |
| | | cl_read_array(layer.weight_updates_cl, layer.weight_updates, layer.inputs*layer.outputs); |
| | | cl_read_array(layer.bias_updates_cl, layer.bias_updates, layer.outputs); |
| | | } |
| | | |
| | | void push_connected_layer(connected_layer layer) |
| | | { |
| | | cl_write_array(layer.weights_cl, layer.weights, layer.inputs*layer.outputs); |
| | | cl_write_array(layer.biases_cl, layer.biases, layer.outputs); |
| | | cl_write_array(layer.weight_updates_cl, layer.weight_updates, layer.inputs*layer.outputs); |
| | | cl_write_array(layer.bias_updates_cl, layer.bias_updates, layer.outputs); |
| | | } |
| | | |
| | | void update_connected_layer_gpu(connected_layer layer) |
| | | { |
| | | axpy_ongpu(layer.outputs, layer.learning_rate, layer.bias_updates_cl, 1, layer.biases_cl, 1); |
| | | scal_ongpu(layer.outputs, layer.momentum, layer.bias_updates_cl, 1); |
| | | |
| | | axpy_ongpu(layer.inputs*layer.outputs, -layer.decay, layer.weights_cl, 1, layer.weight_updates_cl, 1); |
| | | axpy_ongpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates_cl, 1, layer.weights_cl, 1); |
| | | scal_ongpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates_cl, 1); |
| | | pull_connected_layer(layer); |
| | | } |
| | | |
| | | void forward_connected_layer_gpu(connected_layer layer, cl_mem input) |
| | | { |
| | | int i; |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | copy_ongpu_offset(layer.outputs, layer.biases_cl, 0, 1, layer.output_cl, i*layer.outputs, 1); |
| | | } |
| | | int m = layer.batch; |
| | | int k = layer.inputs; |
| | | int n = layer.outputs; |
| | | cl_mem a = input; |
| | | cl_mem b = layer.weights_cl; |
| | | cl_mem c = layer.output_cl; |
| | | gemm_ongpu(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | activate_array_ongpu(layer.output_cl, layer.outputs*layer.batch, layer.activation); |
| | | } |
| | | |
| | | void backward_connected_layer_gpu(connected_layer layer, cl_mem input, cl_mem delta) |
| | | { |
| | | int i; |
| | | gradient_array_ongpu(layer.output_cl, layer.outputs*layer.batch, layer.activation, layer.delta_cl); |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | axpy_ongpu_offset(layer.outputs, 1, layer.delta_cl, i*layer.outputs, 1, layer.bias_updates_cl, 0, 1); |
| | | } |
| | | int m = layer.inputs; |
| | | int k = layer.batch; |
| | | int n = layer.outputs; |
| | | cl_mem a = input; |
| | | cl_mem b = layer.delta_cl; |
| | | cl_mem c = layer.weight_updates_cl; |
| | | gemm_ongpu(1,0,m,n,k,1,a,m,b,n,1,c,n); |
| | | |
| | | m = layer.batch; |
| | | k = layer.outputs; |
| | | n = layer.inputs; |
| | | |
| | | a = layer.delta_cl; |
| | | b = layer.weights_cl; |
| | | c = delta; |
| | | |
| | | if(c) gemm_ongpu(0,1,m,n,k,1,a,k,b,k,0,c,n); |
| | | } |
| | | #endif |