| | |
| | | #include <string.h> |
| | | |
| | | unsigned int data_seed; |
| | | pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; |
| | | |
| | | list *get_paths(char *filename) |
| | | { |
| | |
| | | return lines; |
| | | } |
| | | |
| | | char **get_random_paths_indexes(char **paths, int n, int m, int *indexes) |
| | | { |
| | | char **random_paths = calloc(n, sizeof(char*)); |
| | | int i; |
| | | pthread_mutex_lock(&mutex); |
| | | for(i = 0; i < n; ++i){ |
| | | int index = rand_r(&data_seed)%m; |
| | | indexes[i] = index; |
| | | random_paths[i] = paths[index]; |
| | | if(i == 0) printf("%s\n", paths[index]); |
| | | } |
| | | pthread_mutex_unlock(&mutex); |
| | | return random_paths; |
| | | } |
| | | |
| | | char **get_random_paths(char **paths, int n, int m) |
| | | { |
| | | char **random_paths = calloc(n, sizeof(char*)); |
| | | int i; |
| | | pthread_mutex_lock(&mutex); |
| | | for(i = 0; i < n; ++i){ |
| | | int index = rand_r(&data_seed)%m; |
| | | random_paths[i] = paths[index]; |
| | | if(i == 0) printf("%s\n", paths[index]); |
| | | } |
| | | pthread_mutex_unlock(&mutex); |
| | | return random_paths; |
| | | } |
| | | |
| | |
| | | return X; |
| | | } |
| | | |
| | | matrix load_image_cropped_paths(char **paths, int n, int min, int max, int size) |
| | | matrix load_image_augment_paths(char **paths, int n, int min, int max, int size, float angle, float exposure, float saturation) |
| | | { |
| | | int i; |
| | | matrix X; |
| | |
| | | |
| | | for(i = 0; i < n; ++i){ |
| | | image im = load_image_color(paths[i], 0, 0); |
| | | image crop = random_crop_image(im, min, max, size); |
| | | image crop = random_augment_image(im, angle, min, max, size); |
| | | int flip = rand_r(&data_seed)%2; |
| | | if (flip) flip_image(crop); |
| | | float exp = rand_uniform(1./exposure, exposure); |
| | | float sat = rand_uniform(1./saturation, saturation); |
| | | exposure_image(crop, exp); |
| | | exposure_image(crop, sat); |
| | | |
| | | /* |
| | | show_image(im, "orig"); |
| | | show_image(crop, "crop"); |
| | | cvWaitKey(0); |
| | | */ |
| | | free_image(im); |
| | | X.vals[i] = crop.data; |
| | | X.cols = crop.h*crop.w*crop.c; |
| | |
| | | free(boxes); |
| | | } |
| | | |
| | | void fill_truth_detection(char *path, float *truth, int classes, int num_boxes, int flip, int background, float dx, float dy, float sx, float sy) |
| | | void fill_truth_detection(char *path, int num_boxes, float *truth, int classes, int flip, float dx, float dy, float sx, float sy) |
| | | { |
| | | char *labelpath = find_replace(path, "JPEGImages", "labels"); |
| | | char *labelpath = find_replace(path, "images", "labels"); |
| | | labelpath = find_replace(labelpath, "JPEGImages", "labels"); |
| | | |
| | | labelpath = find_replace(labelpath, ".jpg", ".txt"); |
| | | labelpath = find_replace(labelpath, ".JPG", ".txt"); |
| | | labelpath = find_replace(labelpath, ".JPEG", ".txt"); |
| | | int count = 0; |
| | | box_label *boxes = read_boxes(labelpath, &count); |
| | | randomize_boxes(boxes, count); |
| | | correct_boxes(boxes, count, dx, dy, sx, sy, flip); |
| | | if(count > num_boxes) count = num_boxes; |
| | | float x,y,w,h; |
| | | float left, top, right, bot; |
| | | int id; |
| | | int i; |
| | | if(background){ |
| | | for(i = 0; i < num_boxes*num_boxes*(4+classes+background); i += 4+classes+background){ |
| | | truth[i] = 1; |
| | | } |
| | | } |
| | | for(i = 0; i < count; ++i){ |
| | | left = boxes[i].left * sx - dx; |
| | | right = boxes[i].right * sx - dx; |
| | | top = boxes[i].top * sy - dy; |
| | | bot = boxes[i].bottom* sy - dy; |
| | | |
| | | for (i = 0; i < count; ++i) { |
| | | x = boxes[i].x; |
| | | y = boxes[i].y; |
| | | w = boxes[i].w; |
| | | h = boxes[i].h; |
| | | id = boxes[i].id; |
| | | |
| | | if(flip){ |
| | | float swap = left; |
| | | left = 1. - right; |
| | | right = 1. - swap; |
| | | } |
| | | |
| | | left = constrain(0, 1, left); |
| | | right = constrain(0, 1, right); |
| | | top = constrain(0, 1, top); |
| | | bot = constrain(0, 1, bot); |
| | | |
| | | x = (left+right)/2; |
| | | y = (top+bot)/2; |
| | | w = (right - left); |
| | | h = (bot - top); |
| | | |
| | | if (x <= 0 || x >= 1 || y <= 0 || y >= 1) continue; |
| | | |
| | | int col = (int)(x*num_boxes); |
| | | int row = (int)(y*num_boxes); |
| | | |
| | | x = x*num_boxes - col; |
| | | y = y*num_boxes - row; |
| | | |
| | | /* |
| | | float maxwidth = distance_from_edge(i, num_boxes); |
| | | float maxheight = distance_from_edge(j, num_boxes); |
| | | w = w/maxwidth; |
| | | h = h/maxheight; |
| | | */ |
| | | |
| | | w = constrain(0, 1, w); |
| | | h = constrain(0, 1, h); |
| | | if (w < .01 || h < .01) continue; |
| | | if(1){ |
| | | w = pow(w, 1./2.); |
| | | h = pow(h, 1./2.); |
| | | } |
| | | |
| | | int index = (col+row*num_boxes)*(4+classes+background); |
| | | if(truth[index+classes+background+2]) continue; |
| | | if(background) truth[index++] = 0; |
| | | truth[index+id] = 1; |
| | | index += classes; |
| | | truth[index++] = x; |
| | | truth[index++] = y; |
| | | truth[index++] = w; |
| | | truth[index++] = h; |
| | | truth[i*5+0] = x; |
| | | truth[i*5+1] = y; |
| | | truth[i*5+2] = w; |
| | | truth[i*5+3] = h; |
| | | truth[i*5+4] = id; |
| | | } |
| | | free(boxes); |
| | | } |
| | |
| | | data load_data_captcha(char **paths, int n, int m, int k, int w, int h) |
| | | { |
| | | if(m) paths = get_random_paths(paths, n, m); |
| | | data d; |
| | | data d = {0}; |
| | | d.shallow = 0; |
| | | d.X = load_image_paths(paths, n, w, h); |
| | | d.y = make_matrix(n, k*NUMCHARS); |
| | |
| | | data load_data_captcha_encode(char **paths, int n, int m, int w, int h) |
| | | { |
| | | if(m) paths = get_random_paths(paths, n, m); |
| | | data d; |
| | | data d = {0}; |
| | | d.shallow = 0; |
| | | d.X = load_image_paths(paths, n, w, h); |
| | | d.X.cols = 17100; |
| | |
| | | |
| | | void free_data(data d) |
| | | { |
| | | if(d.indexes){ |
| | | free(d.indexes); |
| | | } |
| | | if(!d.shallow){ |
| | | free_matrix(d.X); |
| | | free_matrix(d.y); |
| | |
| | | { |
| | | char **random_paths = get_random_paths(paths, n, m); |
| | | int i; |
| | | data d; |
| | | data d = {0}; |
| | | d.shallow = 0; |
| | | |
| | | d.X.rows = n; |
| | | d.X.vals = calloc(d.X.rows, sizeof(float*)); |
| | | d.X.cols = h*w*3; |
| | | |
| | | |
| | | int k = size*size*(5+classes); |
| | | d.y = make_matrix(n, k); |
| | | for(i = 0; i < n; ++i){ |
| | |
| | | { |
| | | if(m) paths = get_random_paths(paths, 2*n, m); |
| | | int i,j; |
| | | data d; |
| | | data d = {0}; |
| | | d.shallow = 0; |
| | | |
| | | d.X.rows = n; |
| | |
| | | int h = orig.h; |
| | | int w = orig.w; |
| | | |
| | | data d; |
| | | data d = {0}; |
| | | d.shallow = 0; |
| | | d.w = w; |
| | | d.h = h; |
| | |
| | | return d; |
| | | } |
| | | |
| | | data load_data_detection(int n, char **paths, int m, int classes, int w, int h, int num_boxes, int background) |
| | | data load_data_detection(int n, char **paths, int m, int w, int h, int boxes, int classes, float jitter) |
| | | { |
| | | char **random_paths = get_random_paths(paths, n, m); |
| | | int i; |
| | | data d; |
| | | data d = {0}; |
| | | d.shallow = 0; |
| | | |
| | | d.X.rows = n; |
| | | d.X.vals = calloc(d.X.rows, sizeof(float*)); |
| | | d.X.cols = h*w*3; |
| | | |
| | | int k = num_boxes*num_boxes*(4+classes+background); |
| | | d.y = make_matrix(n, k); |
| | | d.y = make_matrix(n, 5*boxes); |
| | | for(i = 0; i < n; ++i){ |
| | | image orig = load_image_color(random_paths[i], 0, 0); |
| | | |
| | | int oh = orig.h; |
| | | int ow = orig.w; |
| | | |
| | | int dw = ow/10; |
| | | int dh = oh/10; |
| | | int dw = (ow*jitter); |
| | | int dh = (oh*jitter); |
| | | |
| | | int pleft = rand_uniform(-dw, dw); |
| | | int pright = rand_uniform(-dw, dw); |
| | |
| | | float sx = (float)swidth / ow; |
| | | float sy = (float)sheight / oh; |
| | | |
| | | /* |
| | | float angle = rand_uniform()*.1 - .05; |
| | | image rot = rotate_image(orig, angle); |
| | | free_image(orig); |
| | | orig = rot; |
| | | */ |
| | | |
| | | int flip = rand_r(&data_seed)%2; |
| | | image cropped = crop_image(orig, pleft, ptop, swidth, sheight); |
| | | |
| | |
| | | if(flip) flip_image(sized); |
| | | d.X.vals[i] = sized.data; |
| | | |
| | | fill_truth_detection(random_paths[i], d.y.vals[i], classes, num_boxes, flip, background, dx, dy, 1./sx, 1./sy); |
| | | fill_truth_detection(random_paths[i], boxes, d.y.vals[i], classes, flip, dx, dy, 1./sx, 1./sy); |
| | | |
| | | free_image(orig); |
| | | free_image(cropped); |
| | |
| | | return d; |
| | | } |
| | | |
| | | |
| | | void *load_thread(void *ptr) |
| | | { |
| | | |
| | |
| | | |
| | | //printf("Loading data: %d\n", rand_r(&data_seed)); |
| | | load_args a = *(struct load_args*)ptr; |
| | | if(a.exposure == 0) a.exposure = 1; |
| | | if(a.saturation == 0) a.saturation = 1; |
| | | |
| | | if (a.type == OLD_CLASSIFICATION_DATA){ |
| | | *a.d = load_data(a.paths, a.n, a.m, a.labels, a.classes, a.w, a.h); |
| | | } else if (a.type == CLASSIFICATION_DATA){ |
| | | *a.d = load_data_augment(a.paths, a.n, a.m, a.labels, a.classes, a.min, a.max, a.size); |
| | | } else if (a.type == DETECTION_DATA){ |
| | | *a.d = load_data_detection(a.n, a.paths, a.m, a.classes, a.w, a.h, a.num_boxes, a.background); |
| | | *a.d = load_data_augment(a.paths, a.n, a.m, a.labels, a.classes, a.min, a.max, a.size, a.angle, a.exposure, a.saturation); |
| | | } else if (a.type == SUPER_DATA){ |
| | | *a.d = load_data_super(a.paths, a.n, a.m, a.w, a.h, a.scale); |
| | | } else if (a.type == STUDY_DATA){ |
| | | *a.d = load_data_study(a.paths, a.n, a.m, a.labels, a.classes, a.min, a.max, a.size, a.angle, a.exposure, a.saturation); |
| | | } else if (a.type == WRITING_DATA){ |
| | | *a.d = load_data_writing(a.paths, a.n, a.m, a.w, a.h, a.out_w, a.out_h); |
| | | } else if (a.type == REGION_DATA){ |
| | | *a.d = load_data_region(a.n, a.paths, a.m, a.w, a.h, a.num_boxes, a.classes, a.jitter); |
| | | } else if (a.type == DETECTION_DATA){ |
| | | *a.d = load_data_detection(a.n, a.paths, a.m, a.w, a.h, a.num_boxes, a.classes, a.jitter); |
| | | } else if (a.type == SWAG_DATA){ |
| | | *a.d = load_data_swag(a.paths, a.n, a.classes, a.jitter); |
| | | } else if (a.type == COMPARE_DATA){ |
| | |
| | | *(a.im) = load_image_color(a.path, 0, 0); |
| | | *(a.resized) = resize_image(*(a.im), a.w, a.h); |
| | | } else if (a.type == TAG_DATA){ |
| | | *a.d = load_data_tag(a.paths, a.n, a.m, a.classes, a.min, a.max, a.size); |
| | | *a.d = load_data_tag(a.paths, a.n, a.m, a.classes, a.min, a.max, a.size, a.angle, a.exposure, a.saturation); |
| | | //*a.d = load_data(a.paths, a.n, a.m, a.labels, a.classes, a.w, a.h); |
| | | } |
| | | free(ptr); |
| | |
| | | { |
| | | if(m) paths = get_random_paths(paths, n, m); |
| | | char **replace_paths = find_replace_paths(paths, n, ".png", "-label.png"); |
| | | data d; |
| | | data d = {0}; |
| | | d.shallow = 0; |
| | | d.X = load_image_paths(paths, n, w, h); |
| | | d.y = load_image_paths_gray(replace_paths, n, out_w, out_h); |
| | |
| | | data load_data(char **paths, int n, int m, char **labels, int k, int w, int h) |
| | | { |
| | | if(m) paths = get_random_paths(paths, n, m); |
| | | data d; |
| | | data d = {0}; |
| | | d.shallow = 0; |
| | | d.X = load_image_paths(paths, n, w, h); |
| | | d.y = load_labels_paths(paths, n, labels, k); |
| | |
| | | return d; |
| | | } |
| | | |
| | | data load_data_augment(char **paths, int n, int m, char **labels, int k, int min, int max, int size) |
| | | data load_data_study(char **paths, int n, int m, char **labels, int k, int min, int max, int size, float angle, float exposure, float saturation) |
| | | { |
| | | if(m) paths = get_random_paths(paths, n, m); |
| | | data d; |
| | | data d = {0}; |
| | | d.indexes = calloc(n, sizeof(int)); |
| | | if(m) paths = get_random_paths_indexes(paths, n, m, d.indexes); |
| | | d.shallow = 0; |
| | | d.X = load_image_cropped_paths(paths, n, min, max, size); |
| | | d.X = load_image_augment_paths(paths, n, min, max, size, angle, exposure, saturation); |
| | | d.y = load_labels_paths(paths, n, labels, k); |
| | | if(m) free(paths); |
| | | return d; |
| | | } |
| | | |
| | | data load_data_tag(char **paths, int n, int m, int k, int min, int max, int size) |
| | | data load_data_super(char **paths, int n, int m, int w, int h, int scale) |
| | | { |
| | | if(m) paths = get_random_paths(paths, n, m); |
| | | data d = {0}; |
| | | d.shallow = 0; |
| | | |
| | | int i; |
| | | d.X.rows = n; |
| | | d.X.vals = calloc(n, sizeof(float*)); |
| | | d.X.cols = w*h*3; |
| | | |
| | | d.y.rows = n; |
| | | d.y.vals = calloc(n, sizeof(float*)); |
| | | d.y.cols = w*scale * h*scale * 3; |
| | | |
| | | for(i = 0; i < n; ++i){ |
| | | image im = load_image_color(paths[i], 0, 0); |
| | | image crop = random_crop_image(im, w*scale, h*scale); |
| | | int flip = rand_r(&data_seed)%2; |
| | | if (flip) flip_image(crop); |
| | | image resize = resize_image(crop, w, h); |
| | | d.X.vals[i] = resize.data; |
| | | d.y.vals[i] = crop.data; |
| | | free_image(im); |
| | | } |
| | | |
| | | if(m) free(paths); |
| | | return d; |
| | | } |
| | | |
| | | data load_data_augment(char **paths, int n, int m, char **labels, int k, int min, int max, int size, float angle, float exposure, float saturation) |
| | | { |
| | | if(m) paths = get_random_paths(paths, n, m); |
| | | data d = {0}; |
| | | d.shallow = 0; |
| | | d.X = load_image_augment_paths(paths, n, min, max, size, angle, exposure, saturation); |
| | | d.y = load_labels_paths(paths, n, labels, k); |
| | | if(m) free(paths); |
| | | return d; |
| | | } |
| | | |
| | | data load_data_tag(char **paths, int n, int m, int k, int min, int max, int size, float angle, float exposure, float saturation) |
| | | { |
| | | if(m) paths = get_random_paths(paths, n, m); |
| | | data d = {0}; |
| | | d.w = size; |
| | | d.h = size; |
| | | d.shallow = 0; |
| | | d.X = load_image_cropped_paths(paths, n, min, max, size); |
| | | d.X = load_image_augment_paths(paths, n, min, max, size, angle, exposure, saturation); |
| | | d.y = load_tags_paths(paths, n, k); |
| | | if(m) free(paths); |
| | | return d; |
| | |
| | | |
| | | data concat_data(data d1, data d2) |
| | | { |
| | | data d; |
| | | data d = {0}; |
| | | d.shallow = 1; |
| | | d.X = concat_matrix(d1.X, d2.X); |
| | | d.y = concat_matrix(d1.y, d2.y); |
| | | return d; |
| | | } |
| | | |
| | | data concat_datas(data *d, int n) |
| | | { |
| | | int i; |
| | | data out = {0}; |
| | | out.shallow = 1; |
| | | for(i = 0; i < n; ++i){ |
| | | data new = concat_data(d[i], out); |
| | | free_data(out); |
| | | out = new; |
| | | } |
| | | return out; |
| | | } |
| | | |
| | | data load_categorical_data_csv(char *filename, int target, int k) |
| | | { |
| | | data d; |
| | | data d = {0}; |
| | | d.shallow = 0; |
| | | matrix X = csv_to_matrix(filename); |
| | | float *truth_1d = pop_column(&X, target); |
| | |
| | | |
| | | data load_cifar10_data(char *filename) |
| | | { |
| | | data d; |
| | | data d = {0}; |
| | | d.shallow = 0; |
| | | long i,j; |
| | | matrix X = make_matrix(10000, 3072); |
| | |
| | | } |
| | | } |
| | | |
| | | void smooth_data(data d) |
| | | { |
| | | int i, j; |
| | | float scale = 1. / d.y.cols; |
| | | float eps = .1; |
| | | for(i = 0; i < d.y.rows; ++i){ |
| | | for(j = 0; j < d.y.cols; ++j){ |
| | | d.y.vals[i][j] = eps * scale + (1-eps) * d.y.vals[i][j]; |
| | | } |
| | | } |
| | | } |
| | | |
| | | data load_all_cifar10() |
| | | { |
| | | data d; |
| | | data d = {0}; |
| | | d.shallow = 0; |
| | | int i,j,b; |
| | | matrix X = make_matrix(50000, 3072); |
| | |
| | | //normalize_data_rows(d); |
| | | //translate_data_rows(d, -128); |
| | | scale_data_rows(d, 1./255); |
| | | smooth_data(d); |
| | | return d; |
| | | } |
| | | |
| | | data load_go(char *filename) |
| | | { |
| | | FILE *fp = fopen(filename, "rb"); |
| | | matrix X = make_matrix(3363059, 361); |
| | | matrix y = make_matrix(3363059, 361); |
| | | int row, col; |
| | | |
| | | if(!fp) file_error(filename); |
| | | char *label; |
| | | int count = 0; |
| | | while((label = fgetl(fp))){ |
| | | int i; |
| | | if(count == X.rows){ |
| | | X = resize_matrix(X, count*2); |
| | | y = resize_matrix(y, count*2); |
| | | } |
| | | sscanf(label, "%d %d", &row, &col); |
| | | char *board = fgetl(fp); |
| | | |
| | | int index = row*19 + col; |
| | | y.vals[count][index] = 1; |
| | | |
| | | for(i = 0; i < 19*19; ++i){ |
| | | float val = 0; |
| | | if(board[i] == '1') val = 1; |
| | | else if(board[i] == '2') val = -1; |
| | | X.vals[count][i] = val; |
| | | } |
| | | ++count; |
| | | free(label); |
| | | free(board); |
| | | } |
| | | X = resize_matrix(X, count); |
| | | y = resize_matrix(y, count); |
| | | |
| | | data d = {0}; |
| | | d.shallow = 0; |
| | | d.X = X; |
| | | d.y = y; |
| | | |
| | | |
| | | fclose(fp); |
| | | |
| | | return d; |
| | | } |
| | | |
| | | |
| | | void randomize_data(data d) |
| | | { |
| | | int i; |
| | |
| | | } |
| | | } |
| | | |
| | | data get_random_data(data d, int num) |
| | | { |
| | | data r = {0}; |
| | | r.shallow = 1; |
| | | |
| | | r.X.rows = num; |
| | | r.y.rows = num; |
| | | |
| | | r.X.cols = d.X.cols; |
| | | r.y.cols = d.y.cols; |
| | | |
| | | r.X.vals = calloc(num, sizeof(float *)); |
| | | r.y.vals = calloc(num, sizeof(float *)); |
| | | |
| | | int i; |
| | | for(i = 0; i < num; ++i){ |
| | | int index = rand()%d.X.rows; |
| | | r.X.vals[i] = d.X.vals[index]; |
| | | r.y.vals[i] = d.y.vals[index]; |
| | | } |
| | | return r; |
| | | } |
| | | |
| | | data *split_data(data d, int part, int total) |
| | | { |
| | | data *split = calloc(2, sizeof(data)); |