Joseph Redmon
2016-08-11 aebe937710ced03d03f73ab23f410f29685655c1
src/imagenet.c
@@ -2,58 +2,83 @@
#include "utils.h"
#include "parser.h"
#ifdef OPENCV
#include "opencv2/highgui/highgui_c.h"
#endif
void train_imagenet(char *cfgfile, char *weightfile)
{
    data_seed = time(0);
    srand(time(0));
    float avg_loss = -1;
    char *base = basecfg(cfgfile);
    char *backup_directory = "/home/pjreddie/backup/";
    printf("%s\n", base);
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    //net.seen=0;
    int imgs = 1024;
    int i = net.seen/imgs;
    char **labels = get_labels("data/inet.labels.list");
    list *plist = get_paths("/data/imagenet/cls.train.list");
    list *plist = get_paths("data/inet.train.list");
    char **paths = (char **)list_to_array(plist);
    printf("%d\n", plist->size);
    int N = plist->size;
    clock_t time;
    pthread_t load_thread;
    data train;
    data buffer;
    load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, net.w, net.h, &buffer);
    while(1){
        ++i;
    load_args args = {0};
    args.w = net.w;
    args.h = net.h;
    args.paths = paths;
    args.classes = 1000;
    args.n = imgs;
    args.m = N;
    args.labels = labels;
    args.d = &buffer;
    args.type = OLD_CLASSIFICATION_DATA;
    load_thread = load_data_in_thread(args);
    int epoch = (*net.seen)/N;
    while(get_current_batch(net) < net.max_batches || net.max_batches == 0){
        time=clock();
        pthread_join(load_thread, 0);
        train = buffer;
        /*
        image im = float_to_image(256, 256, 3, train.X.vals[114]);
        show_image(im, "training");
        cvWaitKey(0);
        */
        load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, net.w, net.h, &buffer);
        load_thread = load_data_in_thread(args);
        printf("Loaded: %lf seconds\n", sec(clock()-time));
        time=clock();
        float loss = train_network(net, train);
        net.seen += imgs;
        if(avg_loss == -1) avg_loss = loss;
        avg_loss = avg_loss*.9 + loss*.1;
        printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), net.seen);
        printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
        free_data(train);
        if((i % 35000) == 0) net.learning_rate *= .1;
        if(i%1000==0){
        if(*net.seen/N > epoch){
            epoch = *net.seen/N;
            char buff[256];
            sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i);
            sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
            save_weights(net, buff);
        }
        if(*net.seen%1000 == 0){
            char buff[256];
            sprintf(buff, "%s/%s.backup",backup_directory,base);
            save_weights(net, buff);
        }
    }
    char buff[256];
    sprintf(buff, "%s/%s.weights", backup_directory, base);
    save_weights(net, buff);
    pthread_join(load_thread, 0);
    free_data(buffer);
    free_network(net);
    free_ptrs((void**)labels, 1000);
    free_ptrs((void**)paths, plist->size);
    free_list(plist);
    free(base);
}
void validate_imagenet(char *filename, char *weightfile)
@@ -66,6 +91,7 @@
    srand(time(0));
    char **labels = get_labels("data/inet.labels.list");
    //list *plist = get_paths("data/inet.suppress.list");
    list *plist = get_paths("data/inet.val.list");
    char **paths = (char **)list_to_array(plist);
@@ -79,7 +105,19 @@
    int num = (i+1)*m/splits - i*m/splits;
    data val, buffer;
    pthread_t load_thread = load_data_thread(paths, num, 0, labels, 1000, 256, 256, &buffer);
    load_args args = {0};
    args.w = net.w;
    args.h = net.h;
    args.paths = paths;
    args.classes = 1000;
    args.n = num;
    args.m = 0;
    args.labels = labels;
    args.d = &buffer;
    args.type = OLD_CLASSIFICATION_DATA;
    pthread_t load_thread = load_data_in_thread(args);
    for(i = 1; i <= splits; ++i){
        time=clock();
@@ -88,11 +126,14 @@
        num = (i+1)*m/splits - i*m/splits;
        char **part = paths+(i*m/splits);
        if(i != splits) load_thread = load_data_thread(part, num, 0, labels, 1000, 256, 256, &buffer);
        if(i != splits){
            args.paths = part;
            load_thread = load_data_in_thread(args);
        }
        printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time));
        time=clock();
        float *acc = network_accuracies(net, val);
        float *acc = network_accuracies(net, val, 5);
        avg_acc += acc[0];
        avg_top5 += acc[1];
        printf("%d: top1: %f, top5: %f, %lf seconds, %d images\n", i, avg_acc/i, avg_top5/i, sec(clock()-time), val.X.rows);
@@ -111,15 +152,17 @@
    int i = 0;
    char **names = get_labels("data/shortnames.txt");
    clock_t time;
    char input[256];
    int indexes[10];
    char buff[256];
    char *input = buff;
    while(1){
        if(filename){
            strncpy(input, filename, 256);
        }else{
            printf("Enter Image Path: ");
            fflush(stdout);
            fgets(input, 256, stdin);
            input = fgets(input, 256, stdin);
            if(!input) return;
            strtok(input, "\n");
        }
        image im = load_image_color(input, 256, 256);