Joseph Redmon
2016-08-11 aebe937710ced03d03f73ab23f410f29685655c1
src/parser.c
@@ -3,6 +3,7 @@
#include <stdlib.h>
#include "parser.h"
#include "assert.h"
#include "activations.h"
#include "crop_layer.h"
#include "cost_layer.h"
@@ -16,9 +17,11 @@
#include "gru_layer.h"
#include "crnn_layer.h"
#include "maxpool_layer.h"
#include "reorg_layer.h"
#include "softmax_layer.h"
#include "dropout_layer.h"
#include "detection_layer.h"
#include "region_layer.h"
#include "avgpool_layer.h"
#include "local_layer.h"
#include "route_layer.h"
@@ -42,6 +45,7 @@
int is_gru(section *s);
int is_crnn(section *s);
int is_maxpool(section *s);
int is_reorg(section *s);
int is_avgpool(section *s);
int is_dropout(section *s);
int is_softmax(section *s);
@@ -51,6 +55,7 @@
int is_shortcut(section *s);
int is_cost(section *s);
int is_detection(section *s);
int is_region(section *s);
int is_route(section *s);
list *read_cfg(char *filename);
@@ -113,13 +118,6 @@
    deconvolutional_layer layer = make_deconvolutional_layer(batch,h,w,c,n,size,stride,activation);
    char *weights = option_find_str(options, "weights", 0);
    char *biases = option_find_str(options, "biases", 0);
    parse_data(weights, layer.filters, c*n*size*size);
    parse_data(biases, layer.biases, n);
    #ifdef GPU
    if(weights || biases) push_deconvolutional_layer(layer);
    #endif
    return layer;
}
@@ -167,13 +165,6 @@
    layer.flipped = option_find_int_quiet(options, "flipped", 0);
    layer.dot = option_find_float_quiet(options, "dot", 0);
    char *weights = option_find_str(options, "weights", 0);
    char *biases = option_find_str(options, "biases", 0);
    parse_data(weights, layer.filters, c*n*size*size);
    parse_data(biases, layer.biases, n);
    #ifdef GPU
    if(weights || biases) push_convolutional_layer(layer);
    #endif
    return layer;
}
@@ -227,13 +218,6 @@
    connected_layer layer = make_connected_layer(params.batch, params.inputs, output, activation, batch_normalize);
    char *weights = option_find_str(options, "weights", 0);
    char *biases = option_find_str(options, "biases", 0);
    parse_data(biases, layer.biases, output);
    parse_data(weights, layer.weights, params.inputs*output);
    #ifdef GPU
    if(weights || biases) push_connected_layer(layer);
    #endif
    return layer;
}
@@ -245,6 +229,25 @@
    return layer;
}
layer parse_region(list *options, size_params params)
{
    int coords = option_find_int(options, "coords", 4);
    int classes = option_find_int(options, "classes", 20);
    int num = option_find_int(options, "num", 1);
    layer l = make_region_layer(params.batch, params.w, params.h, num, classes, coords);
    assert(l.outputs == params.inputs);
    l.softmax = option_find_int(options, "softmax", 0);
    l.max_boxes = option_find_int_quiet(options, "max",30);
    l.jitter = option_find_float(options, "jitter", .2);
    l.rescore = option_find_int_quiet(options, "rescore",0);
    l.coord_scale = option_find_float(options, "coord_scale", 1);
    l.object_scale = option_find_float(options, "object_scale", 1);
    l.noobject_scale = option_find_float(options, "noobject_scale", 1);
    l.class_scale = option_find_float(options, "class_scale", 1);
    return l;
}
detection_layer parse_detection(list *options, size_params params)
{
    int coords = option_find_int(options, "coords", 1);
@@ -264,6 +267,8 @@
    layer.noobject_scale = option_find_float(options, "noobject_scale", 1);
    layer.class_scale = option_find_float(options, "class_scale", 1);
    layer.jitter = option_find_float(options, "jitter", .2);
    layer.random = option_find_int_quiet(options, "random", 0);
    layer.reorg = option_find_int_quiet(options, "reorg", 0);
    return layer;
}
@@ -300,6 +305,21 @@
    return l;
}
layer parse_reorg(list *options, size_params params)
{
    int stride = option_find_int(options, "stride",1);
    int batch,h,w,c;
    h = params.h;
    w = params.w;
    c = params.c;
    batch=params.batch;
    if(!(h && w && c)) error("Layer before reorg layer must output image.");
    layer layer = make_reorg_layer(batch,w,h,c,stride);
    return layer;
}
maxpool_layer parse_maxpool(list *options, size_params params)
{
    int stride = option_find_int(options, "stride",1);
@@ -463,6 +483,10 @@
    net->max_crop = option_find_int_quiet(options, "max_crop",net->w*2);
    net->min_crop = option_find_int_quiet(options, "min_crop",net->w);
    net->angle = option_find_float_quiet(options, "angle", 0);
    net->saturation = option_find_float_quiet(options, "saturation", 1);
    net->exposure = option_find_float_quiet(options, "exposure", 1);
    if(!net->inputs && !(net->h && net->w && net->c)) error("No input parameters supplied");
    char *policy_s = option_find_str(options, "policy", "constant");
@@ -556,6 +580,8 @@
            l = parse_crop(options, params);
        }else if(is_cost(s)){
            l = parse_cost(options, params);
        }else if(is_region(s)){
            l = parse_region(options, params);
        }else if(is_detection(s)){
            l = parse_detection(options, params);
        }else if(is_softmax(s)){
@@ -566,6 +592,8 @@
            l = parse_batchnorm(options, params);
        }else if(is_maxpool(s)){
            l = parse_maxpool(options, params);
        }else if(is_reorg(s)){
            l = parse_reorg(options, params);
        }else if(is_avgpool(s)){
            l = parse_avgpool(options, params);
        }else if(is_route(s)){
@@ -602,9 +630,13 @@
    net.outputs = get_network_output_size(net);
    net.output = get_network_output(net);
    if(workspace_size){
    //printf("%ld\n", workspace_size);
        //printf("%ld\n", workspace_size);
#ifdef GPU
        net.workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1);
        if(gpu_index >= 0){
            net.workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1);
        }else {
            net.workspace = calloc(1, workspace_size);
        }
#else
        net.workspace = calloc(1, workspace_size);
#endif
@@ -619,6 +651,7 @@
    if (strcmp(type, "[crop]")==0) return CROP;
    if (strcmp(type, "[cost]")==0) return COST;
    if (strcmp(type, "[detection]")==0) return DETECTION;
    if (strcmp(type, "[region]")==0) return REGION;
    if (strcmp(type, "[local]")==0) return LOCAL;
    if (strcmp(type, "[deconv]")==0
            || strcmp(type, "[deconvolutional]")==0) return DECONVOLUTIONAL;
@@ -634,6 +667,7 @@
            || strcmp(type, "[connected]")==0) return CONNECTED;
    if (strcmp(type, "[max]")==0
            || strcmp(type, "[maxpool]")==0) return MAXPOOL;
    if (strcmp(type, "[reorg]")==0) return REORG;
    if (strcmp(type, "[avg]")==0
            || strcmp(type, "[avgpool]")==0) return AVGPOOL;
    if (strcmp(type, "[dropout]")==0) return DROPOUT;
@@ -658,6 +692,10 @@
{
    return (strcmp(s->type, "[cost]")==0);
}
int is_region(section *s)
{
    return (strcmp(s->type, "[region]")==0);
}
int is_detection(section *s)
{
    return (strcmp(s->type, "[detection]")==0);
@@ -702,6 +740,10 @@
    return (strcmp(s->type, "[conn]")==0
            || strcmp(s->type, "[connected]")==0);
}
int is_reorg(section *s)
{
    return (strcmp(s->type, "[reorg]")==0);
}
int is_maxpool(section *s)
{
    return (strcmp(s->type, "[max]")==0