| | |
| | | #include "network.h" |
| | | #include "detection_layer.h" |
| | | #include "cost_layer.h" |
| | | #include "utils.h" |
| | | #include "parser.h" |
| | | |
| | | |
| | | char *class_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"}; |
| | | char *inet_class_names[] = {"bg", "accordion", "airplane", "ant", "antelope", "apple", "armadillo", "artichoke", "axe", "baby bed", "backpack", "bagel", "balance beam", "banana", "band aid", "banjo", "baseball", "basketball", "bathing cap", "beaker", "bear", "bee", "bell pepper", "bench", "bicycle", "binder", "bird", "bookshelf", "bow tie", "bow", "bowl", "brassiere", "burrito", "bus", "butterfly", "camel", "can opener", "car", "cart", "cattle", "cello", "centipede", "chain saw", "chair", "chime", "cocktail shaker", "coffee maker", "computer keyboard", "computer mouse", "corkscrew", "cream", "croquet ball", "crutch", "cucumber", "cup or mug", "diaper", "digital clock", "dishwasher", "dog", "domestic cat", "dragonfly", "drum", "dumbbell", "electric fan", "elephant", "face powder", "fig", "filing cabinet", "flower pot", "flute", "fox", "french horn", "frog", "frying pan", "giant panda", "goldfish", "golf ball", "golfcart", "guacamole", "guitar", "hair dryer", "hair spray", "hamburger", "hammer", "hamster", "harmonica", "harp", "hat with a wide brim", "head cabbage", "helmet", "hippopotamus", "horizontal bar", "horse", "hotdog", "iPod", "isopod", "jellyfish", "koala bear", "ladle", "ladybug", "lamp", "laptop", "lemon", "lion", "lipstick", "lizard", "lobster", "maillot", "maraca", "microphone", "microwave", "milk can", "miniskirt", "monkey", "motorcycle", "mushroom", "nail", "neck brace", "oboe", "orange", "otter", "pencil box", "pencil sharpener", "perfume", "person", "piano", "pineapple", "ping-pong ball", "pitcher", "pizza", "plastic bag", "plate rack", "pomegranate", "popsicle", "porcupine", "power drill", "pretzel", "printer", "puck", "punching bag", "purse", "rabbit", "racket", "ray", "red panda", "refrigerator", "remote control", "rubber eraser", "rugby ball", "ruler", "salt or pepper shaker", "saxophone", "scorpion", "screwdriver", "seal", "sheep", "ski", "skunk", "snail", "snake", "snowmobile", "snowplow", "soap dispenser", "soccer ball", "sofa", "spatula", "squirrel", "starfish", "stethoscope", "stove", "strainer", "strawberry", "stretcher", "sunglasses", "swimming trunks", "swine", "syringe", "table", "tape player", "tennis ball", "tick", "tie", "tiger", "toaster", "traffic light", "train", "trombone", "trumpet", "turtle", "tv or monitor", "unicycle", "vacuum", "violin", "volleyball", "waffle iron", "washer", "water bottle", "watercraft", "whale", "wine bottle", "zebra"}; |
| | | #define AMNT 3 |
| | | void draw_detection(image im, float *box, int side) |
| | | |
| | | void draw_detection(image im, float *box, int side, char *label) |
| | | { |
| | | int classes = 20; |
| | | int elems = 4+classes; |
| | |
| | | for(r = 0; r < side; ++r){ |
| | | for(c = 0; c < side; ++c){ |
| | | j = (r*side + c) * elems; |
| | | //printf("%d\n", j); |
| | | //printf("Prob: %f\n", box[j]); |
| | | int class = max_index(box+j, classes); |
| | | if(box[j+class] > .2){ |
| | | //int z; |
| | | //for(z = 0; z < classes; ++z) printf("%f %s\n", box[j+z], class_names[z]); |
| | | printf("%f %s\n", box[j+class], class_names[class]); |
| | | float red = get_color(0,class,classes); |
| | | float green = get_color(1,class,classes); |
| | | float blue = get_color(2,class,classes); |
| | | |
| | | //float maxheight = distance_from_edge(r, side); |
| | | //float maxwidth = distance_from_edge(c, side); |
| | | j += classes; |
| | | float y = box[j+0]; |
| | | float x = box[j+1]; |
| | | float x = box[j+0]; |
| | | float y = box[j+1]; |
| | | x = (x+c)/side; |
| | | y = (y+r)/side; |
| | | float h = box[j+2]; //*maxheight; |
| | | float w = box[j+3]; //*maxwidth; |
| | | float w = box[j+2]; //*maxwidth; |
| | | float h = box[j+3]; //*maxheight; |
| | | h = h*h; |
| | | w = w*w; |
| | | //printf("coords %f %f %f %f\n", x, y, w, h); |
| | | |
| | | int left = (x-w/2)*im.w; |
| | | int right = (x+w/2)*im.w; |
| | | int top = (y-h/2)*im.h; |
| | | int bot = (y+h/2)*im.h; |
| | | draw_box(im, left, top, right, bot, red, green, blue); |
| | | draw_box(im, left+1, top+1, right+1, bot+1, red, green, blue); |
| | | draw_box(im, left-1, top-1, right-1, bot-1, red, green, blue); |
| | | } |
| | | } |
| | | } |
| | | //printf("Done\n"); |
| | | show_image(im, "box"); |
| | | cvWaitKey(0); |
| | | show_image(im, label); |
| | | } |
| | | |
| | | void train_detection(char *cfgfile, char *weightfile) |
| | |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | detection_layer *layer = get_network_detection_layer(net); |
| | | detection_layer layer = get_network_detection_layer(net); |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 128; |
| | | int i = net.seen/imgs; |
| | | data train, buffer; |
| | | |
| | | int classes = layer->classes; |
| | | int background = layer->background; |
| | | int side = sqrt(get_detection_layer_locations(*layer)); |
| | | int classes = layer.classes; |
| | | int background = (layer.background || layer.objectness); |
| | | int side = sqrt(get_detection_layer_locations(layer)); |
| | | |
| | | char **paths; |
| | | list *plist; |
| | | if (imgnet){ |
| | | plist = get_paths("/home/pjreddie/data/imagenet/det.train.list"); |
| | | }else{ |
| | | //plist = get_paths("/home/pjreddie/data/voc/trainall.txt"); |
| | | //plist = get_paths("/home/pjreddie/data/voc/no_2012_val.txt"); |
| | | //plist = get_paths("/home/pjreddie/data/voc/no_2007_test.txt"); |
| | | //plist = get_paths("/home/pjreddie/data/voc/val_2012.txt"); |
| | | plist = get_paths("/home/pjreddie/data/voc/no_2007_test.txt"); |
| | | //plist = get_paths("/home/pjreddie/data/coco/trainval.txt"); |
| | | plist = get_paths("/home/pjreddie/data/voc/all2007-2012.txt"); |
| | | //plist = get_paths("/home/pjreddie/data/voc/all2007-2012.txt"); |
| | | } |
| | | paths = (char **)list_to_array(plist); |
| | | pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer); |
| | |
| | | load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer); |
| | | |
| | | /* |
| | | image im = float_to_image(net.w, net.h, 3, train.X.vals[114]); |
| | | image copy = copy_image(im); |
| | | draw_detection(copy, train.y.vals[114], 7); |
| | | free_image(copy); |
| | | */ |
| | | image im = float_to_image(net.w, net.h, 3, train.X.vals[114]); |
| | | image copy = copy_image(im); |
| | | draw_detection(copy, train.y.vals[114], 7, "truth"); |
| | | cvWaitKey(0); |
| | | free_image(copy); |
| | | */ |
| | | |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | |
| | | if (avg_loss < 0) avg_loss = loss; |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs); |
| | | if(i%100==0){ |
| | | if(i == 100){ |
| | | net.learning_rate *= 10; |
| | | } |
| | | if(i%1000==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i); |
| | | save_weights(net, buff); |
| | |
| | | } |
| | | } |
| | | |
| | | void predict_detections(network net, data d, float threshold, int offset, int classes, int nuisance, int background, int num_boxes, int per_box) |
| | | void predict_detections(network net, data d, float threshold, int offset, int classes, int objectness, int background, int num_boxes, int per_box) |
| | | { |
| | | matrix pred = network_predict_data(net, d); |
| | | int j, k, class; |
| | | for(j = 0; j < pred.rows; ++j){ |
| | | for(k = 0; k < pred.cols; k += per_box){ |
| | | float scale = 1.; |
| | | int index = k/per_box; |
| | | int row = index / num_boxes; |
| | | int col = index % num_boxes; |
| | | if (nuisance) scale = 1.-pred.vals[j][k]; |
| | | for (class = 0; class < classes; ++class){ |
| | | int ci = k+classes+background+nuisance; |
| | | float y = (pred.vals[j][ci + 0] + row)/num_boxes; |
| | | float x = (pred.vals[j][ci + 1] + col)/num_boxes; |
| | | float h = pred.vals[j][ci + 2]; //* distance_from_edge(row, num_boxes); |
| | | h = h*h; |
| | | float w = pred.vals[j][ci + 3]; //* distance_from_edge(col, num_boxes); |
| | | w = w*w; |
| | | float prob = scale*pred.vals[j][k+class+background+nuisance]; |
| | | if(prob < threshold) continue; |
| | | printf("%d %d %f %f %f %f %f\n", offset + j, class, prob, y, x, h, w); |
| | | } |
| | | matrix pred = network_predict_data(net, d); |
| | | int j, k, class; |
| | | for(j = 0; j < pred.rows; ++j){ |
| | | for(k = 0; k < pred.cols; k += per_box){ |
| | | float scale = 1.; |
| | | int index = k/per_box; |
| | | int row = index / num_boxes; |
| | | int col = index % num_boxes; |
| | | if (objectness) scale = 1.-pred.vals[j][k]; |
| | | for (class = 0; class < classes; ++class){ |
| | | int ci = k+classes+(background || objectness); |
| | | float x = (pred.vals[j][ci + 0] + col)/num_boxes; |
| | | float y = (pred.vals[j][ci + 1] + row)/num_boxes; |
| | | float w = pred.vals[j][ci + 2]; // distance_from_edge(row, num_boxes); |
| | | float h = pred.vals[j][ci + 3]; // distance_from_edge(col, num_boxes); |
| | | w = pow(w, 2); |
| | | h = pow(h, 2); |
| | | float prob = scale*pred.vals[j][k+class+(background || objectness)]; |
| | | if(prob < threshold) continue; |
| | | printf("%d %d %f %f %f %f %f\n", offset + j, class, prob, x, y, w, h); |
| | | } |
| | | } |
| | | free_matrix(pred); |
| | | } |
| | | free_matrix(pred); |
| | | } |
| | | |
| | | void validate_detection(char *cfgfile, char *weightfile) |
| | |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | detection_layer *layer = get_network_detection_layer(net); |
| | | detection_layer layer = get_network_detection_layer(net); |
| | | fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | srand(time(0)); |
| | | |
| | | list *plist = get_paths("/home/pjreddie/data/voc/val.txt"); |
| | | //list *plist = get_paths("/home/pjreddie/data/voc/val.expanded.txt"); |
| | | //list *plist = get_paths("/home/pjreddie/data/voc/train.txt"); |
| | | list *plist = get_paths("/home/pjreddie/data/voc/test.txt"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | |
| | | int classes = layer->classes; |
| | | int nuisance = layer->nuisance; |
| | | int background = (layer->background && !nuisance); |
| | | int num_boxes = sqrt(get_detection_layer_locations(*layer)); |
| | | int classes = layer.classes; |
| | | int objectness = layer.objectness; |
| | | int background = layer.background; |
| | | int num_boxes = sqrt(get_detection_layer_locations(layer)); |
| | | |
| | | int per_box = 4+classes+background+nuisance; |
| | | int per_box = 4+classes+(background || objectness); |
| | | int num_output = num_boxes*num_boxes*per_box; |
| | | |
| | | int m = plist->size; |
| | |
| | | data *val = calloc(nthreads, sizeof(data)); |
| | | data *buf = calloc(nthreads, sizeof(data)); |
| | | pthread_t *thr = calloc(nthreads, sizeof(data)); |
| | | |
| | | time_t start = time(0); |
| | | |
| | | for(t = 0; t < nthreads; ++t){ |
| | | int num = (i+1+t)*m/splits - (i+t)*m/splits; |
| | | char **part = paths+((i+t)*m/splits); |
| | | thr[t] = load_data_thread(part, num, 0, 0, num_output, net.w, net.h, &(buf[t])); |
| | | } |
| | | |
| | | clock_t time; |
| | | for(i = nthreads; i <= splits; i += nthreads){ |
| | | time=clock(); |
| | | for(t = 0; t < nthreads; ++t){ |
| | | pthread_join(thr[t], 0); |
| | | val[t] = buf[t]; |
| | |
| | | thr[t] = load_data_thread(part, num, 0, 0, num_output, net.w, net.h, &(buf[t])); |
| | | } |
| | | |
| | | fprintf(stderr, "%d: Loaded: %lf seconds\n", i, sec(clock()-time)); |
| | | fprintf(stderr, "%d\n", i); |
| | | for(t = 0; t < nthreads; ++t){ |
| | | predict_detections(net, val[t], .01, (i-nthreads+t)*m/splits, classes, nuisance, background, num_boxes, per_box); |
| | | predict_detections(net, val[t], .001, (i-nthreads+t)*m/splits, classes, objectness, background, num_boxes, per_box); |
| | | free_data(val[t]); |
| | | } |
| | | time=clock(); |
| | | } |
| | | fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start)); |
| | | } |
| | | |
| | | void test_detection(char *cfgfile, char *weightfile) |
| | |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | detection_layer layer = get_network_detection_layer(net); |
| | | if (!layer.joint) fprintf(stderr, "Detection layer should use joint prediction to draw correctly.\n"); |
| | | int im_size = 448; |
| | | set_batch_network(&net, 1); |
| | | srand(2222222); |
| | | clock_t time; |
| | | char filename[256]; |
| | | while(1){ |
| | | printf("Image Path: "); |
| | | fflush(stdout); |
| | | fgets(filename, 256, stdin); |
| | | strtok(filename, "\n"); |
| | | image im = load_image_color(filename, im_size, im_size); |
| | | printf("%d %d %d\n", im.h, im.w, im.c); |
| | | float *X = im.data; |
| | | image im = load_image_color(filename,0,0); |
| | | image sized = resize_image(im, im_size, im_size); |
| | | float *X = sized.data; |
| | | time=clock(); |
| | | float *predictions = network_predict(net, X); |
| | | printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time)); |
| | | draw_detection(im, predictions, 7); |
| | | draw_detection(im, predictions, 7, "predictions"); |
| | | free_image(im); |
| | | free_image(sized); |
| | | #ifdef OPENCV |
| | | cvWaitKey(0); |
| | | #endif |
| | | } |
| | | } |
| | | |