Joseph Redmon
2015-06-10 afe245329bdd14f36ca773fd7d497fc628b0535a
src/network.c
@@ -1,246 +1,126 @@
#include <stdio.h>
#include <time.h>
#include "network.h"
#include "image.h"
#include "data.h"
#include "utils.h"
#include "crop_layer.h"
#include "connected_layer.h"
#include "convolutional_layer.h"
//#include "old_conv.h"
#include "deconvolutional_layer.h"
#include "detection_layer.h"
#include "maxpool_layer.h"
#include "normalization_layer.h"
#include "cost_layer.h"
#include "softmax_layer.h"
#include "dropout_layer.h"
#include "route_layer.h"
network make_network(int n, int batch)
char *get_layer_string(LAYER_TYPE a)
{
    network net;
    switch(a){
        case CONVOLUTIONAL:
            return "convolutional";
        case DECONVOLUTIONAL:
            return "deconvolutional";
        case CONNECTED:
            return "connected";
        case MAXPOOL:
            return "maxpool";
        case SOFTMAX:
            return "softmax";
        case DETECTION:
            return "detection";
        case DROPOUT:
            return "dropout";
        case CROP:
            return "crop";
        case COST:
            return "cost";
        case ROUTE:
            return "route";
        default:
            break;
    }
    return "none";
}
network make_network(int n)
{
    network net = {0};
    net.n = n;
    net.batch = batch;
    net.layers = calloc(net.n, sizeof(void *));
    net.types = calloc(net.n, sizeof(LAYER_TYPE));
    net.outputs = 0;
    net.output = 0;
    net.layers = calloc(net.n, sizeof(layer));
    #ifdef GPU
    net.input_gpu = calloc(1, sizeof(float *));
    net.truth_gpu = calloc(1, sizeof(float *));
    #endif
    return net;
}
void print_convolutional_cfg(FILE *fp, convolutional_layer *l, int first)
{
    int i;
    fprintf(fp, "[convolutional]\n");
    if(first) fprintf(fp,   "batch=%d\n"
                            "height=%d\n"
                            "width=%d\n"
                            "channels=%d\n",
                            l->batch,l->h, l->w, l->c);
    fprintf(fp, "filters=%d\n"
                "size=%d\n"
                "stride=%d\n"
                "activation=%s\n",
                l->n, l->size, l->stride,
                get_activation_string(l->activation));
    fprintf(fp, "data=");
    for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]);
    for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
    /*
    int j,k;
    for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]);
    for(i = 0; i < l->n; ++i){
        for(j = l->c-1; j >= 0; --j){
            for(k = 0; k < l->size*l->size; ++k){
                fprintf(fp, "%g,", l->filters[i*(l->c*l->size*l->size)+j*l->size*l->size+k]);
            }
        }
    }
    */
    fprintf(fp, "\n\n");
}
void print_connected_cfg(FILE *fp, connected_layer *l, int first)
{
    int i;
    fprintf(fp, "[connected]\n");
    if(first) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
    fprintf(fp, "output=%d\n"
            "activation=%s\n",
            l->outputs,
            get_activation_string(l->activation));
    fprintf(fp, "data=");
    for(i = 0; i < l->outputs; ++i) fprintf(fp, "%g,", l->biases[i]);
    for(i = 0; i < l->inputs*l->outputs; ++i) fprintf(fp, "%g,", l->weights[i]);
    fprintf(fp, "\n\n");
}
void print_maxpool_cfg(FILE *fp, maxpool_layer *l, int first)
{
    fprintf(fp, "[maxpool]\n");
    if(first) fprintf(fp,   "batch=%d\n"
            "height=%d\n"
            "width=%d\n"
            "channels=%d\n",
            l->batch,l->h, l->w, l->c);
    fprintf(fp, "stride=%d\n\n", l->stride);
}
void print_normalization_cfg(FILE *fp, normalization_layer *l, int first)
{
    fprintf(fp, "[localresponsenormalization]\n");
    if(first) fprintf(fp,   "batch=%d\n"
            "height=%d\n"
            "width=%d\n"
            "channels=%d\n",
            l->batch,l->h, l->w, l->c);
    fprintf(fp, "size=%d\n"
                "alpha=%g\n"
                "beta=%g\n"
                "kappa=%g\n\n", l->size, l->alpha, l->beta, l->kappa);
}
void print_softmax_cfg(FILE *fp, softmax_layer *l, int first)
{
    fprintf(fp, "[softmax]\n");
    if(first) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
    fprintf(fp, "\n");
}
void save_network(network net, char *filename)
{
    FILE *fp = fopen(filename, "w");
    if(!fp) file_error(filename);
    int i;
    for(i = 0; i < net.n; ++i)
    {
        if(net.types[i] == CONVOLUTIONAL)
            print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i], i==0);
        else if(net.types[i] == CONNECTED)
            print_connected_cfg(fp, (connected_layer *)net.layers[i], i==0);
        else if(net.types[i] == MAXPOOL)
            print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], i==0);
        else if(net.types[i] == NORMALIZATION)
            print_normalization_cfg(fp, (normalization_layer *)net.layers[i], i==0);
        else if(net.types[i] == SOFTMAX)
            print_softmax_cfg(fp, (softmax_layer *)net.layers[i], i==0);
    }
    fclose(fp);
}
void forward_network(network net, float *input)
void forward_network(network net, network_state state)
{
    int i;
    for(i = 0; i < net.n; ++i){
        if(net.types[i] == CONVOLUTIONAL){
            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
            forward_convolutional_layer(layer, input);
            input = layer.output;
        layer l = net.layers[i];
        if(l.type == CONVOLUTIONAL){
            forward_convolutional_layer(l, state);
        } else if(l.type == DECONVOLUTIONAL){
            forward_deconvolutional_layer(l, state);
        } else if(l.type == DETECTION){
            forward_detection_layer(l, state);
        } else if(l.type == CONNECTED){
            forward_connected_layer(l, state);
        } else if(l.type == CROP){
            forward_crop_layer(l, state);
        } else if(l.type == COST){
            forward_cost_layer(l, state);
        } else if(l.type == SOFTMAX){
            forward_softmax_layer(l, state);
        } else if(l.type == MAXPOOL){
            forward_maxpool_layer(l, state);
        } else if(l.type == DROPOUT){
            forward_dropout_layer(l, state);
        } else if(l.type == ROUTE){
            forward_route_layer(l, net);
        }
        else if(net.types[i] == CONNECTED){
            connected_layer layer = *(connected_layer *)net.layers[i];
            forward_connected_layer(layer, input);
            input = layer.output;
        }
        else if(net.types[i] == SOFTMAX){
            softmax_layer layer = *(softmax_layer *)net.layers[i];
            forward_softmax_layer(layer, input);
            input = layer.output;
        }
        else if(net.types[i] == MAXPOOL){
            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
            forward_maxpool_layer(layer, input);
            input = layer.output;
        }
        else if(net.types[i] == NORMALIZATION){
            normalization_layer layer = *(normalization_layer *)net.layers[i];
            forward_normalization_layer(layer, input);
            input = layer.output;
        }
        state.input = l.output;
    }
}
void update_network(network net, float step, float momentum, float decay)
void update_network(network net)
{
    int i;
    int update_batch = net.batch*net.subdivisions;
    for(i = 0; i < net.n; ++i){
        if(net.types[i] == CONVOLUTIONAL){
            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
            update_convolutional_layer(layer, step, momentum, decay);
        }
        else if(net.types[i] == MAXPOOL){
            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
        }
        else if(net.types[i] == SOFTMAX){
            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
        }
        else if(net.types[i] == NORMALIZATION){
            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
        }
        else if(net.types[i] == CONNECTED){
            connected_layer layer = *(connected_layer *)net.layers[i];
            update_connected_layer(layer, step, momentum, decay);
        layer l = net.layers[i];
        if(l.type == CONVOLUTIONAL){
            update_convolutional_layer(l, update_batch, net.learning_rate, net.momentum, net.decay);
        } else if(l.type == DECONVOLUTIONAL){
            update_deconvolutional_layer(l, net.learning_rate, net.momentum, net.decay);
        } else if(l.type == CONNECTED){
            update_connected_layer(l, update_batch, net.learning_rate, net.momentum, net.decay);
        }
    }
}
float *get_network_output_layer(network net, int i)
{
    if(net.types[i] == CONVOLUTIONAL){
        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
        return layer.output;
    } else if(net.types[i] == MAXPOOL){
        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
        return layer.output;
    } else if(net.types[i] == SOFTMAX){
        softmax_layer layer = *(softmax_layer *)net.layers[i];
        return layer.output;
    } else if(net.types[i] == CONNECTED){
        connected_layer layer = *(connected_layer *)net.layers[i];
        return layer.output;
    } else if(net.types[i] == NORMALIZATION){
        normalization_layer layer = *(normalization_layer *)net.layers[i];
        return layer.output;
    }
    return 0;
}
float *get_network_output(network net)
{
    return get_network_output_layer(net, net.n-1);
    int i;
    for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
    return net.layers[i].output;
}
float *get_network_delta_layer(network net, int i)
float get_network_cost(network net)
{
    if(net.types[i] == CONVOLUTIONAL){
        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
        return layer.delta;
    } else if(net.types[i] == MAXPOOL){
        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
        return layer.delta;
    } else if(net.types[i] == SOFTMAX){
        softmax_layer layer = *(softmax_layer *)net.layers[i];
        return layer.delta;
    } else if(net.types[i] == CONNECTED){
        connected_layer layer = *(connected_layer *)net.layers[i];
        return layer.delta;
    if(net.layers[net.n-1].type == COST){
        return net.layers[net.n-1].output[0];
    }
    if(net.layers[net.n-1].type == DETECTION){
        return net.layers[net.n-1].cost[0];
    }
    return 0;
}
float *get_network_delta(network net)
{
    return get_network_delta_layer(net, net.n-1);
}
float calculate_error_network(network net, float *truth)
{
    float sum = 0;
    float *delta = get_network_delta(net);
    float *out = get_network_output(net);
    int i, k = get_network_output_size(net);
    for(i = 0; i < k; ++i){
        //printf("%f, ", out[i]);
        delta[i] = truth[i] - out[i];
        sum += delta[i]*delta[i];
    }
    //printf("\n");
    return sum;
}
int get_predicted_class_network(network net)
{
    float *out = get_network_output(net);
@@ -248,224 +128,198 @@
    return max_index(out, k);
}
float backward_network(network net, float *input, float *truth)
void backward_network(network net, network_state state)
{
    float error = calculate_error_network(net, truth);
    int i;
    float *prev_input;
    float *prev_delta;
    float *original_input = state.input;
    for(i = net.n-1; i >= 0; --i){
        if(i == 0){
            prev_input = input;
            prev_delta = 0;
            state.input = original_input;
            state.delta = 0;
        }else{
            prev_input = get_network_output_layer(net, i-1);
            prev_delta = get_network_delta_layer(net, i-1);
            layer prev = net.layers[i-1];
            state.input = prev.output;
            state.delta = prev.delta;
        }
        if(net.types[i] == CONVOLUTIONAL){
            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
            learn_convolutional_layer(layer);
            //learn_convolutional_layer(layer);
            if(i != 0) backward_convolutional_layer(layer, prev_delta);
        }
        else if(net.types[i] == MAXPOOL){
            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
            if(i != 0) backward_maxpool_layer(layer, prev_input, prev_delta);
        }
        else if(net.types[i] == NORMALIZATION){
            normalization_layer layer = *(normalization_layer *)net.layers[i];
            if(i != 0) backward_normalization_layer(layer, prev_input, prev_delta);
        }
        else if(net.types[i] == SOFTMAX){
            softmax_layer layer = *(softmax_layer *)net.layers[i];
            if(i != 0) backward_softmax_layer(layer, prev_input, prev_delta);
        }
        else if(net.types[i] == CONNECTED){
            connected_layer layer = *(connected_layer *)net.layers[i];
            learn_connected_layer(layer, prev_input);
            if(i != 0) backward_connected_layer(layer, prev_input, prev_delta);
        layer l = net.layers[i];
        if(l.type == CONVOLUTIONAL){
            backward_convolutional_layer(l, state);
        } else if(l.type == DECONVOLUTIONAL){
            backward_deconvolutional_layer(l, state);
        } else if(l.type == MAXPOOL){
            if(i != 0) backward_maxpool_layer(l, state);
        } else if(l.type == DROPOUT){
            backward_dropout_layer(l, state);
        } else if(l.type == DETECTION){
            backward_detection_layer(l, state);
        } else if(l.type == SOFTMAX){
            if(i != 0) backward_softmax_layer(l, state);
        } else if(l.type == CONNECTED){
            backward_connected_layer(l, state);
        } else if(l.type == COST){
            backward_cost_layer(l, state);
        } else if(l.type == ROUTE){
            backward_route_layer(l, net);
        }
    }
}
float train_network_datum(network net, float *x, float *y)
{
    #ifdef GPU
    if(gpu_index >= 0) return train_network_datum_gpu(net, x, y);
    #endif
    network_state state;
    state.input = x;
    state.truth = y;
    state.train = 1;
    forward_network(net, state);
    backward_network(net, state);
    float error = get_network_cost(net);
    if((net.seen/net.batch)%net.subdivisions == 0) update_network(net);
    return error;
}
float train_network_datum(network net, float *x, float *y, float step, float momentum, float decay)
float train_network_sgd(network net, data d, int n)
{
    forward_network(net, x);
    //int class = get_predicted_class_network(net);
    float error = backward_network(net, x, y);
    update_network(net, step, momentum, decay);
    //return (y[class]?1:0);
    return error;
}
    int batch = net.batch;
    float *X = calloc(batch*d.X.cols, sizeof(float));
    float *y = calloc(batch*d.y.cols, sizeof(float));
float train_network_sgd(network net, data d, int n, float step, float momentum,float decay)
{
    int i;
    float error = 0;
    int correct = 0;
    int pos = 0;
    float sum = 0;
    for(i = 0; i < n; ++i){
        int index = rand()%d.X.rows;
        float err = train_network_datum(net, d.X.vals[index], d.y.vals[index], step, momentum, decay);
        float *y = d.y.vals[index];
        int class = get_predicted_class_network(net);
        correct += (y[class]?1:0);
        if(y[1]){
            error += err;
            ++pos;
        }
        //printf("%d %f %f\n", i,net.output[0], d.y.vals[index][0]);
        //if((i+1)%10 == 0){
        //    printf("%d: %f\n", (i+1), (float)correct/(i+1));
        //}
        net.seen += batch;
        get_random_batch(d, batch, X, y);
        float err = train_network_datum(net, X, y);
        sum += err;
    }
    //printf("Accuracy: %f\n",(float) correct/n);
    return error/pos;
    free(X);
    free(y);
    return (float)sum/(n*batch);
}
float train_network_batch(network net, data d, int n, float step, float momentum,float decay)
float train_network(network net, data d)
{
    int batch = net.batch;
    int n = d.X.rows / batch;
    float *X = calloc(batch*d.X.cols, sizeof(float));
    float *y = calloc(batch*d.y.cols, sizeof(float));
    int i;
    int correct = 0;
    float sum = 0;
    for(i = 0; i < n; ++i){
        int index = rand()%d.X.rows;
        float *x = d.X.vals[index];
        float *y = d.y.vals[index];
        forward_network(net, x);
        int class = get_predicted_class_network(net);
        backward_network(net, x, y);
        correct += (y[class]?1:0);
        get_next_batch(d, batch, i*batch, X, y);
        net.seen += batch;
        float err = train_network_datum(net, X, y);
        sum += err;
    }
    update_network(net, step, momentum, decay);
    return (float)correct/n;
    free(X);
    free(y);
    return (float)sum/(n*batch);
}
void train_network(network net, data d, float step, float momentum, float decay)
float train_network_batch(network net, data d, int n)
{
    int i;
    int correct = 0;
    for(i = 0; i < d.X.rows; ++i){
        correct += train_network_datum(net, d.X.vals[i], d.y.vals[i], step, momentum, decay);
        if(i%100 == 0){
            visualize_network(net);
            cvWaitKey(10);
    int i,j;
    network_state state;
    state.train = 1;
    float sum = 0;
    int batch = 2;
    for(i = 0; i < n; ++i){
        for(j = 0; j < batch; ++j){
            int index = rand()%d.X.rows;
            state.input = d.X.vals[index];
            state.truth = d.y.vals[index];
            forward_network(net, state);
            backward_network(net, state);
            sum += get_network_cost(net);
        }
        update_network(net);
    }
    visualize_network(net);
    cvWaitKey(100);
    fprintf(stderr, "Accuracy: %f\n", (float)correct/d.X.rows);
    return (float)sum/(n*batch);
}
int get_network_output_size_layer(network net, int i)
void set_batch_network(network *net, int b)
{
    if(net.types[i] == CONVOLUTIONAL){
        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
        image output = get_convolutional_image(layer);
        return output.h*output.w*output.c;
    net->batch = b;
    int i;
    for(i = 0; i < net->n; ++i){
        net->layers[i].batch = b;
    }
    else if(net.types[i] == MAXPOOL){
        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
        image output = get_maxpool_image(layer);
        return output.h*output.w*output.c;
    }
    else if(net.types[i] == CONNECTED){
        connected_layer layer = *(connected_layer *)net.layers[i];
        return layer.outputs;
    }
    else if(net.types[i] == SOFTMAX){
        softmax_layer layer = *(softmax_layer *)net.layers[i];
        return layer.inputs;
    }
    return 0;
}
/*
   int resize_network(network net, int h, int w, int c)
   {
   int i;
   for (i = 0; i < net.n; ++i){
   if(net.types[i] == CONVOLUTIONAL){
   convolutional_layer *layer = (convolutional_layer *)net.layers[i];
   layer->h = h;
   layer->w = w;
   layer->c = c;
   image output = get_convolutional_image(*layer);
   h = output.h;
   w = output.w;
   c = output.c;
   }
   else if(net.types[i] == MAXPOOL){
   maxpool_layer *layer = (maxpool_layer *)net.layers[i];
   layer->h = h;
   layer->w = w;
   layer->c = c;
   image output = get_maxpool_image(*layer);
   h = output.h;
   w = output.w;
   c = output.c;
   }
   }
   return 0;
   }
 */
int resize_network(network net, int h, int w, int c)
{
    fprintf(stderr, "Might be broken, careful!!");
    int i;
    for (i = 0; i < net.n; ++i){
        if(net.types[i] == CONVOLUTIONAL){
            convolutional_layer *layer = (convolutional_layer *)net.layers[i];
            resize_convolutional_layer(layer, h, w, c);
            resize_convolutional_layer(layer, h, w);
            image output = get_convolutional_image(*layer);
            h = output.h;
            w = output.w;
            c = output.c;
        } else if(net.types[i] == DECONVOLUTIONAL){
            deconvolutional_layer *layer = (deconvolutional_layer *)net.layers[i];
            resize_deconvolutional_layer(layer, h, w);
            image output = get_deconvolutional_image(*layer);
            h = output.h;
            w = output.w;
            c = output.c;
        }else if(net.types[i] == MAXPOOL){
            maxpool_layer *layer = (maxpool_layer *)net.layers[i];
            resize_maxpool_layer(layer, h, w, c);
            resize_maxpool_layer(layer, h, w);
            image output = get_maxpool_image(*layer);
            h = output.h;
            w = output.w;
            c = output.c;
        }else if(net.types[i] == NORMALIZATION){
            normalization_layer *layer = (normalization_layer *)net.layers[i];
            resize_normalization_layer(layer, h, w, c);
            image output = get_normalization_image(*layer);
            h = output.h;
            w = output.w;
            c = output.c;
        }else if(net.types[i] == DROPOUT){
            dropout_layer *layer = (dropout_layer *)net.layers[i];
            resize_dropout_layer(layer, h*w*c);
        }else{
            error("Cannot resize this type of layer");
        }
    }
    return 0;
}
*/
int get_network_output_size(network net)
{
    int i = net.n-1;
    return get_network_output_size_layer(net, i);
    int i;
    for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
    return net.layers[i].outputs;
}
int get_network_input_size(network net)
{
    return net.layers[0].inputs;
}
detection_layer get_network_detection_layer(network net)
{
    int i;
    for(i = 0; i < net.n; ++i){
        if(net.layers[i].type == DETECTION){
            return net.layers[i];
        }
    }
    fprintf(stderr, "Detection layer not found!!\n");
    detection_layer l = {0};
    return l;
}
image get_network_image_layer(network net, int i)
{
    if(net.types[i] == CONVOLUTIONAL){
        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
        return get_convolutional_image(layer);
    layer l = net.layers[i];
    if (l.out_w && l.out_h && l.out_c){
        return float_to_image(l.out_w, l.out_h, l.out_c, l.output);
    }
    else if(net.types[i] == MAXPOOL){
        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
        return get_maxpool_image(layer);
    }
    else if(net.types[i] == NORMALIZATION){
        normalization_layer layer = *(normalization_layer *)net.layers[i];
        return get_normalization_image(layer);
    }
    return make_empty_image(0,0,0);
    image def = {0};
    return def;
}
image get_network_image(network net)
@@ -475,7 +329,8 @@
        image m = get_network_image_layer(net, i);
        if(m.h != 0) return m;
    }
    return make_empty_image(0,0,0);
    image def = {0};
    return def;
}
void visualize_network(network net)
@@ -485,35 +340,82 @@
    char buff[256];
    for(i = 0; i < net.n; ++i){
        sprintf(buff, "Layer %d", i);
        if(net.types[i] == CONVOLUTIONAL){
            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
            prev = visualize_convolutional_layer(layer, buff, prev);
        }
        if(net.types[i] == NORMALIZATION){
            normalization_layer layer = *(normalization_layer *)net.layers[i];
            visualize_normalization_layer(layer, buff);
        layer l = net.layers[i];
        if(l.type == CONVOLUTIONAL){
            prev = visualize_convolutional_layer(l, buff, prev);
        }
    } 
}
void top_predictions(network net, int k, int *index)
{
    int size = get_network_output_size(net);
    float *out = get_network_output(net);
    top_k(out, size, k, index);
}
float *network_predict(network net, float *input)
{
    forward_network(net, input);
#ifdef GPU
    if(gpu_index >= 0)  return network_predict_gpu(net, input);
#endif
    network_state state;
    state.input = input;
    state.truth = 0;
    state.train = 0;
    state.delta = 0;
    forward_network(net, state);
    float *out = get_network_output(net);
    return out;
}
matrix network_predict_data(network net, data test)
matrix network_predict_data_multi(network net, data test, int n)
{
    int i,j;
    int i,j,b,m;
    int k = get_network_output_size(net);
    matrix pred = make_matrix(test.X.rows, k);
    for(i = 0; i < test.X.rows; ++i){
        float *out = network_predict(net, test.X.vals[i]);
        for(j = 0; j < k; ++j){
            pred.vals[i][j] = out[j];
    float *X = calloc(net.batch*test.X.rows, sizeof(float));
    for(i = 0; i < test.X.rows; i += net.batch){
        for(b = 0; b < net.batch; ++b){
            if(i+b == test.X.rows) break;
            memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
        }
        for(m = 0; m < n; ++m){
            float *out = network_predict(net, X);
            for(b = 0; b < net.batch; ++b){
                if(i+b == test.X.rows) break;
                for(j = 0; j < k; ++j){
                    pred.vals[i+b][j] += out[j+b*k]/n;
                }
            }
        }
    }
    free(X);
    return pred;
}
matrix network_predict_data(network net, data test)
{
    int i,j,b;
    int k = get_network_output_size(net);
    matrix pred = make_matrix(test.X.rows, k);
    float *X = calloc(net.batch*test.X.cols, sizeof(float));
    for(i = 0; i < test.X.rows; i += net.batch){
        for(b = 0; b < net.batch; ++b){
            if(i+b == test.X.rows) break;
            memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
        }
        float *out = network_predict(net, X);
        for(b = 0; b < net.batch; ++b){
            if(i+b == test.X.rows) break;
            for(j = 0; j < k; ++j){
                pred.vals[i+b][j] = out[j+b*k];
            }
        }
    }
    free(X);
    return pred;   
}
@@ -521,30 +423,9 @@
{
    int i,j;
    for(i = 0; i < net.n; ++i){
        float *output = 0;
        int n = 0;
        if(net.types[i] == CONVOLUTIONAL){
            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
            output = layer.output;
            image m = get_convolutional_image(layer);
            n = m.h*m.w*m.c;
        }
        else if(net.types[i] == MAXPOOL){
            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
            output = layer.output;
            image m = get_maxpool_image(layer);
            n = m.h*m.w*m.c;
        }
        else if(net.types[i] == CONNECTED){
            connected_layer layer = *(connected_layer *)net.layers[i];
            output = layer.output;
            n = layer.outputs;
        }
        else if(net.types[i] == SOFTMAX){
            softmax_layer layer = *(softmax_layer *)net.layers[i];
            output = layer.output;
            n = layer.inputs;
        }
        layer l = net.layers[i];
        float *output = l.output;
        int n = l.outputs;
        float mean = mean_array(output, n);
        float vari = variance_array(output, n);
        fprintf(stderr, "Layer %d - Mean: %f, Variance: %f\n",i,mean, vari);
@@ -555,10 +436,54 @@
    }
}
void compare_networks(network n1, network n2, data test)
{
    matrix g1 = network_predict_data(n1, test);
    matrix g2 = network_predict_data(n2, test);
    int i;
    int a,b,c,d;
    a = b = c = d = 0;
    for(i = 0; i < g1.rows; ++i){
        int truth = max_index(test.y.vals[i], test.y.cols);
        int p1 = max_index(g1.vals[i], g1.cols);
        int p2 = max_index(g2.vals[i], g2.cols);
        if(p1 == truth){
            if(p2 == truth) ++d;
            else ++c;
        }else{
            if(p2 == truth) ++b;
            else ++a;
        }
    }
    printf("%5d %5d\n%5d %5d\n", a, b, c, d);
    float num = pow((abs(b - c) - 1.), 2.);
    float den = b + c;
    printf("%f\n", num/den);
}
float network_accuracy(network net, data d)
{
    matrix guess = network_predict_data(net, d);
    float acc = matrix_accuracy(d.y, guess);
    float acc = matrix_topk_accuracy(d.y, guess,1);
    free_matrix(guess);
    return acc;
}
float *network_accuracies(network net, data d)
{
    static float acc[2];
    matrix guess = network_predict_data(net, d);
    acc[0] = matrix_topk_accuracy(d.y, guess,1);
    acc[1] = matrix_topk_accuracy(d.y, guess,5);
    free_matrix(guess);
    return acc;
}
float network_accuracy_multi(network net, data d, int n)
{
    matrix guess = network_predict_data_multi(net, d, n);
    float acc = matrix_topk_accuracy(d.y, guess,1);
    free_matrix(guess);
    return acc;
}