| | |
| | | #include <immintrin.h> |
| | | #include <smmintrin.h> |
| | | |
| | | static inline __int32 _mm256_extract_epi64(__m256i a, const int index) { |
| | | return a.m256i_i64[index]; |
| | | } |
| | | |
| | | static inline __int32 _mm256_extract_epi32(__m256i a, const int index) { |
| | | return a.m256i_i32[index]; |
| | | } |
| | | |
| | | static inline float _castu32_f32(uint32_t a) { |
| | | return *((float *)&a); |
| | | } |
| | | |
| | | static inline float _mm256_extract_float32(__m256 a, const int index) { |
| | | return _castu32_f32(_mm256_extract_epi32(_mm256_castps_si256(a), index)); |
| | | } |
| | | |
| | | #else // Linux GCC/Clang |
| | | #include <x86intrin.h> |
| | | #include <ammintrin.h> |
| | |
| | | #include <smmintrin.h> |
| | | #include <cpuid.h> |
| | | |
| | | static inline float _castu32_f32(uint32_t a) { |
| | | return *((float *)&a); |
| | | } |
| | | |
| | | static inline float _mm256_extract_float32(__m256 a, const int index) { |
| | | return _castu32_f32(_mm256_extract_epi32(_mm256_castps_si256(a), index)); |
| | | } |
| | | |
| | | void asm_cpuid(uint32_t* abcd, uint32_t eax) |
| | | { |
| | | uint32_t ebx = 0, edx = 0, ecx = 0; |
| | |
| | | } |
| | | |
| | | |
| | | void convolution_2d(int w, int h, int ksize, int n, int c, int pad, int stride, |
| | | void convolution_2d_old(int w, int h, int ksize, int n, int c, int pad, int stride, |
| | | float *weights, float *input, float *output) |
| | | { |
| | | int out_h = (h + 2 * pad - ksize) / stride + 1; // output_height=input_height for stride=1 and pad=1 |
| | |
| | | } |
| | | } |
| | | |
| | | void convolution_2d(int w, int h, int ksize, int n, int c, int pad, int stride, |
| | | float *weights, float *input, float *output, float *mean) |
| | | { |
| | | int out_h = (h + 2 * pad - ksize) / stride + 1; // output_height=input_height for stride=1 and pad=1 |
| | | int out_w = (w + 2 * pad - ksize) / stride + 1; // output_width=input_width for stride=1 and pad=1 |
| | | int i, f, j; |
| | | |
| | | #if defined(_OPENMP) |
| | | static int max_num_threads = 0; |
| | | if (max_num_threads == 0) { |
| | | max_num_threads = omp_get_max_threads(); |
| | | omp_set_num_threads(4);// max_num_threads / 2); |
| | | } |
| | | #endif |
| | | |
| | | //convolution_2d_old(w, h, ksize, n, c, pad, stride, weights, input, output); |
| | | |
| | | __m256i all256_sing1 = _mm256_set_epi32(0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000); |
| | | for (i = 0; i < ksize*ksize*n*c; i+=8) { |
| | | *((__m256*)&weights[i]) = _mm256_and_ps(*((__m256*)&weights[i]), _mm256_castsi256_ps(all256_sing1)); |
| | | } |
| | | |
| | | for (i = 0; i < w*h*c; i += 8) { |
| | | //*((__m256*)&input[i]) = _mm256_and_ps(*((__m256*)&input[i]), _mm256_castsi256_ps(all256_sing1)); |
| | | } |
| | | |
| | | |
| | | //__m256i all256_last_zero = _mm256_set1_epi32(0xFFFFFFFF); |
| | | //all256_last_zero.m256i_i32[7] = 0; |
| | | __m256i all256_last_zero = |
| | | _mm256_set_epi32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x0); |
| | | |
| | | __m256i idx256 = _mm256_set_epi32(0, 7, 6, 5, 4, 3, 2, 1); |
| | | //__m256 all256_sing1 = _mm256_set1_ps(0x80000000); |
| | | __m256 all256_one = _mm256_set1_ps(1); |
| | | __m256i all256i_one = _mm256_set1_epi32(1); |
| | | |
| | | ///__m256i src256 = _mm256_loadu_si256((__m256i *)(&src[i])); |
| | | ///__m256i result256 = _mm256_and_si256(src256, all256_sing1); // check sign in 8 x 32-bit floats |
| | | |
| | | int fil; |
| | | // filter index |
| | | #pragma omp parallel for // "omp parallel for" - automatic parallelization of loop by using OpenMP |
| | | for (fil = 0; fil < n; ++fil) { |
| | | int chan, y, x, f_y, f_x; |
| | | float cur_mean = fabs(mean[fil]); |
| | | __m256 mean256 = _mm256_set1_ps(cur_mean); |
| | | // channel index |
| | | //for (chan = 0; chan < c; ++chan) |
| | | // input - y |
| | | for (y = 0; y < h; ++y) |
| | | // input - x |
| | | for (x = 0; x < w-8; x+=8) |
| | | { |
| | | int const output_index = fil*w*h + y*w + x; |
| | | float sum = 0; |
| | | __m256 sum256 = _mm256_set1_ps(0); |
| | | |
| | | for (chan = 0; chan < c; ++chan) { |
| | | int const weights_pre_index = fil*c*ksize*ksize + chan*ksize*ksize; |
| | | int const input_pre_index = chan*w*h; |
| | | |
| | | |
| | | // filter - y |
| | | for (f_y = 0; f_y < ksize; ++f_y) |
| | | { |
| | | int input_y = y + f_y - pad; |
| | | //__m256 in = *((__m256*)&input[input_pre_index + input_y*w]); |
| | | if (input_y < 0 || input_y >= h) continue; |
| | | //__m256 in = _mm256_loadu_ps(&input[input_pre_index + input_y*w + x - pad]); |
| | | |
| | | // filter - x |
| | | for (f_x = 0; f_x < ksize; ++f_x) |
| | | { |
| | | int input_x = x + f_x - pad; |
| | | //if (input_y < 0 || input_x < 0 || input_y >= h || input_x >= w) continue; |
| | | |
| | | int input_index = input_pre_index + input_y*w + input_x; |
| | | int weights_index = weights_pre_index + f_y*ksize + f_x; |
| | | //if (input_y < 0 || input_y >= h) continue; |
| | | |
| | | //sum += input[input_index] * weights[weights_index]; |
| | | |
| | | __m256 in = *((__m256*)&input[input_index]); |
| | | __m256 w = _mm256_set1_ps(weights[weights_index]); |
| | | //__m256 w_sign = _mm256_and_ps(w, _mm256_castsi256_ps(all256_sing1)); // check sign in 8 x 32-bit floats |
| | | __m256 xor256 = _mm256_xor_ps(w, in); |
| | | //printf("\n xor256_1 = %f, xor256_2 = %f \n", xor256.m256_f32[0], xor256.m256_f32[1]); |
| | | //printf("\n in = %f, w = %f, xor256 = %f \n", in.m256_f32[0], w_sign.m256_f32[0], xor256.m256_f32[0]); |
| | | |
| | | //__m256 pn1 = _mm256_and_ps(_mm256_castsi256_ps(all256i_one), xor256); |
| | | |
| | | |
| | | //sum256 = xor256; |
| | | sum256 = _mm256_add_ps(xor256, sum256); |
| | | //printf("\n --- \n"); |
| | | //printf("\n 0 = %f, 1 = %f, 2 = %f, 3 = %f, 4 = %f, 5 = %f, 6 = %f, 7 = %f \n", in.m256_f32[0], in.m256_f32[1], in.m256_f32[2], in.m256_f32[3], in.m256_f32[4], in.m256_f32[5], in.m256_f32[6], in.m256_f32[7]); |
| | | |
| | | if (f_x < ksize-1) { |
| | | //in = _mm256_permutevar8x32_ps(in, idx256); |
| | | //in = _mm256_and_ps(in, _mm256_castsi256_ps(all256_last_zero)); |
| | | } |
| | | } |
| | | } |
| | | } |
| | | // l.output[filters][width][height] += |
| | | // state.input[channels][width][height] * |
| | | // l.weights[filters][channels][filter_width][filter_height]; |
| | | //output[output_index] += sum; |
| | | |
| | | sum256 = _mm256_mul_ps(sum256, mean256); |
| | | //printf("\n cur_mean = %f, sum256 = %f, sum256 = %f, in = %f \n", |
| | | // cur_mean, sum256.m256_f32[0], sum256.m256_f32[1], input[input_pre_index]); |
| | | |
| | | //__m256 out = *((__m256*)&output[output_index]); |
| | | //out = _mm256_add_ps(out, sum256); |
| | | //*((__m256*)&output[output_index]) = out; |
| | | *((__m256*)&output[output_index]) = sum256; |
| | | |
| | | //_mm256_storeu_ps(&C[i*ldc + j], result256); |
| | | } |
| | | } |
| | | } |
| | | |
| | | |
| | | |
| | | // http://graphics.stanford.edu/~seander/bithacks.html |
| | |
| | | static inline int popcnt256_custom(__m256i n) { |
| | | __m256i val = count256(n); |
| | | |
| | | return val.m256i_i64[0] + |
| | | val.m256i_i64[1] + |
| | | val.m256i_i64[2] + |
| | | val.m256i_i64[3]; |
| | | //return val.m256i_i64[0] + |
| | | //val.m256i_i64[1] + |
| | | //val.m256i_i64[2] + |
| | | //val.m256i_i64[3]; |
| | | return _mm256_extract_epi64(val, 0) |
| | | + _mm256_extract_epi64(val, 1) |
| | | + _mm256_extract_epi64(val, 2) |
| | | + _mm256_extract_epi64(val, 3); |
| | | } |
| | | |
| | | void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED, |
| | |
| | | static int max_num_threads = 0; |
| | | if (max_num_threads == 0) { |
| | | max_num_threads = omp_get_max_threads(); |
| | | omp_set_num_threads(max_num_threads / 2); |
| | | //omp_set_num_threads(max_num_threads / 2); |
| | | } |
| | | #endif |
| | | |
| | |
| | | } |
| | | |
| | | // count of 1 bits |
| | | count = count_sum.m256i_i64[0] + |
| | | count_sum.m256i_i64[1] + |
| | | count_sum.m256i_i64[2] + |
| | | count_sum.m256i_i64[3]; |
| | | //count = count_sum.m256i_i64[0] + |
| | | // count_sum.m256i_i64[1] + |
| | | // count_sum.m256i_i64[2] + |
| | | // count_sum.m256i_i64[3]; |
| | | count = _mm256_extract_epi64(count_sum, 0) |
| | | + _mm256_extract_epi64(count_sum, 1) |
| | | + _mm256_extract_epi64(count_sum, 2) |
| | | + _mm256_extract_epi64(count_sum, 3); |
| | | |
| | | int f1 = (K % bit_step == 0) ? 0 : (bit_step - (K % bit_step)); |
| | | count = count - f1; // remove extra bits (from empty space for align only) |
| | |
| | | int col_index = (h * width_col + w)*ldb_align + c; // transposed & aligned |
| | | |
| | | //data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)]; |
| | | __m256 src256 = _mm256_loadu_ps((__m256i *)(&data_im[im_col + width*(im_row + height*c_im)])); |
| | | data_col[col_index + ldb_align * 0] = src256.m256_f32[0]; |
| | | data_col[col_index + ldb_align * 1] = src256.m256_f32[1]; |
| | | data_col[col_index + ldb_align * 2] = src256.m256_f32[2]; |
| | | data_col[col_index + ldb_align * 3] = src256.m256_f32[3]; |
| | | data_col[col_index + ldb_align * 4] = src256.m256_f32[4]; |
| | | data_col[col_index + ldb_align * 5] = src256.m256_f32[5]; |
| | | data_col[col_index + ldb_align * 6] = src256.m256_f32[6]; |
| | | data_col[col_index + ldb_align * 7] = src256.m256_f32[7]; |
| | | __m256 src256 = _mm256_loadu_ps((float *)(&data_im[im_col + width*(im_row + height*c_im)])); |
| | | data_col[col_index + ldb_align * 0] = _mm256_extract_float32(src256, 0);// src256.m256_f32[0]; |
| | | data_col[col_index + ldb_align * 1] = _mm256_extract_float32(src256, 1);// src256.m256_f32[1]; |
| | | data_col[col_index + ldb_align * 2] = _mm256_extract_float32(src256, 2);// src256.m256_f32[2]; |
| | | data_col[col_index + ldb_align * 3] = _mm256_extract_float32(src256, 3);// src256.m256_f32[3]; |
| | | data_col[col_index + ldb_align * 4] = _mm256_extract_float32(src256, 4);// src256.m256_f32[4]; |
| | | data_col[col_index + ldb_align * 5] = _mm256_extract_float32(src256, 5);// src256.m256_f32[5]; |
| | | data_col[col_index + ldb_align * 6] = _mm256_extract_float32(src256, 6);// src256.m256_f32[6]; |
| | | data_col[col_index + ldb_align * 7] = _mm256_extract_float32(src256, 7);// src256.m256_f32[7]; |
| | | |
| | | //_mm256_storeu_ps(&data_col[col_index], src256); |
| | | } |
| | |
| | | int col_index = (c * height_col + h) * width_col + w; |
| | | |
| | | //data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)]; |
| | | __m256 src256 = _mm256_loadu_ps((__m256i *)(&data_im[im_col + width*(im_row + height*c_im)])); |
| | | __m256 src256 = _mm256_loadu_ps((float *)(&data_im[im_col + width*(im_row + height*c_im)])); |
| | | _mm256_storeu_ps(&data_col[col_index], src256); |
| | | } |
| | | |
| | |
| | | for (i = 0; i < n-8; i += 8) { |
| | | //x[i] = (x[i]>0) ? x[i] : .1*x[i]; |
| | | |
| | | __m256 src256 = _mm256_loadu_ps((__m256 *)(&x[i])); |
| | | __m256 src256 = _mm256_loadu_ps(&x[i]); |
| | | __m256 mult256 = _mm256_mul_ps((src256), all256_01); // mult * 0.1 |
| | | |
| | | __m256i sign256 = _mm256_and_si256(_mm256_castps_si256(src256), all256_sing1); // check sign in 8 x 32-bit floats |
| | | |
| | | __m256 result256 = _mm256_blendv_ps(src256, mult256, _mm256_castsi256_ps(sign256)); // (sign>0) ? src : mult; |
| | | _mm256_storeu_ps((__m256 *)(&x[i]), result256); |
| | | _mm256_storeu_ps(&x[i], result256); |
| | | } |
| | | |
| | | for (; i < n; ++i) { |
| | |
| | | |
| | | |
| | | void convolution_2d(int w, int h, int ksize, int n, int c, int pad, int stride, |
| | | float *weights, float *input, float *output) |
| | | float *weights, float *input, float *output, float *mean) |
| | | { |
| | | int out_h = (h + 2 * pad - ksize) / stride + 1; // output_height=input_height for stride=1 and pad=1 |
| | | int out_w = (w + 2 * pad - ksize) / stride + 1; // output_width=input_width for stride=1 and pad=1 |