| | |
| | | typedef enum { |
| | | CONVOLUTIONAL, |
| | | CONNECTED, |
| | | MAXPOOL |
| | | MAXPOOL, |
| | | SOFTMAX |
| | | } LAYER_TYPE; |
| | | |
| | | typedef struct { |
| | | int n; |
| | | void **layers; |
| | | LAYER_TYPE *types; |
| | | int outputs; |
| | | double *output; |
| | | } network; |
| | | |
| | | network make_network(int n); |
| | | void forward_network(network net, double *input); |
| | | void learn_network(network net, double *input); |
| | | void update_network(network net, double step); |
| | | void train_network_batch(network net, batch b); |
| | | double backward_network(network net, double *input, double *truth); |
| | | void update_network(network net, double step, double momentum, double decay); |
| | | double train_network_sgd(network net, data d, int n, double step, double momentum,double decay); |
| | | double train_network_batch(network net, data d, int n, double step, double momentum,double decay); |
| | | void train_network(network net, data d, double step, double momentum, double decay); |
| | | matrix network_predict_data(network net, data test); |
| | | double network_accuracy(network net, data d); |
| | | double *get_network_output(network net); |
| | | double *get_network_output_layer(network net, int i); |
| | | double *get_network_delta_layer(network net, int i); |
| | |
| | | int get_network_output_size(network net); |
| | | image get_network_image(network net); |
| | | image get_network_image_layer(network net, int i); |
| | | int get_predicted_class_network(network net); |
| | | void print_network(network net); |
| | | void visualize_network(network net); |
| | | |
| | | #endif |
| | | |