| | |
| | | |
| | | #ifndef CV_VERSION_EPOCH |
| | | #include "opencv2/videoio/videoio_c.h" |
| | | #define OPENCV_VERSION CVAUX_STR(CV_VERSION_MAJOR)""CVAUX_STR(CV_VERSION_MINOR)""CVAUX_STR(CV_VERSION_REVISION) |
| | | #define OPENCV_VERSION CVAUX_STR(CV_VERSION_MAJOR)"" CVAUX_STR(CV_VERSION_MINOR)"" CVAUX_STR(CV_VERSION_REVISION) |
| | | #pragma comment(lib, "opencv_world" OPENCV_VERSION ".lib") |
| | | #else |
| | | #define OPENCV_VERSION CVAUX_STR(CV_VERSION_EPOCH)""CVAUX_STR(CV_VERSION_MAJOR)""CVAUX_STR(CV_VERSION_MINOR) |
| | | #define OPENCV_VERSION CVAUX_STR(CV_VERSION_EPOCH)"" CVAUX_STR(CV_VERSION_MAJOR)"" CVAUX_STR(CV_VERSION_MINOR) |
| | | #pragma comment(lib, "opencv_core" OPENCV_VERSION ".lib") |
| | | #pragma comment(lib, "opencv_imgproc" OPENCV_VERSION ".lib") |
| | | #pragma comment(lib, "opencv_highgui" OPENCV_VERSION ".lib") |
| | |
| | | srand(time(0)); |
| | | network net = nets[0]; |
| | | |
| | | if ((net.batch * net.subdivisions) == 1) { |
| | | printf("\n Error: You set incorrect value batch=1 for Training! You should set batch=64 subdivision=64 \n"); |
| | | getchar(); |
| | | } |
| | | |
| | | int imgs = net.batch * net.subdivisions * ngpus; |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | data train, buffer; |
| | |
| | | args.n = imgs; |
| | | args.m = plist->size; |
| | | args.classes = classes; |
| | | args.flip = net.flip; |
| | | args.jitter = jitter; |
| | | args.num_boxes = l.max_boxes; |
| | | args.small_object = net.small_object; |
| | | args.d = &buffer; |
| | | args.type = DETECTION_DATA; |
| | | args.threads = 64; // 8 |
| | | args.threads = 16; // 64 |
| | | |
| | | args.angle = net.angle; |
| | | args.exposure = net.exposure; |
| | |
| | | args.hue = net.hue; |
| | | |
| | | #ifdef OPENCV |
| | | args.threads = 3; |
| | | IplImage* img = NULL; |
| | | float max_img_loss = 5; |
| | | int number_of_lines = 100; |
| | |
| | | #endif //OPENCV |
| | | |
| | | pthread_t load_thread = load_data(args); |
| | | clock_t time; |
| | | double time; |
| | | int count = 0; |
| | | //while(i*imgs < N*120){ |
| | | while(get_current_batch(net) < net.max_batches){ |
| | | if(l.random && count++%10 == 0){ |
| | | printf("Resizing\n"); |
| | | int dim = (rand() % 12 + (init_w/32 - 5)) * 32; // +-160 |
| | | //if (get_current_batch(net)+100 > net.max_batches) dim = 544; |
| | | //int dim = (rand() % 12 + (init_w/32 - 5)) * 32; // +-160 |
| | | //int dim = (rand() % 4 + 16) * 32; |
| | | printf("%d\n", dim); |
| | | args.w = dim; |
| | | args.h = dim; |
| | | //if (get_current_batch(net)+100 > net.max_batches) dim = 544; |
| | | |
| | | //int random_val = rand() % 12; |
| | | //int dim_w = (random_val + (init_w / 32 - 5)) * 32; // +-160 |
| | | //int dim_h = (random_val + (init_h / 32 - 5)) * 32; // +-160 |
| | | |
| | | float random_val = rand_scale(1.4); // *x or /x |
| | | int dim_w = roundl(random_val*init_w / 32) * 32; |
| | | int dim_h = roundl(random_val*init_h / 32) * 32; |
| | | |
| | | if (dim_w < 32) dim_w = 32; |
| | | if (dim_h < 32) dim_h = 32; |
| | | |
| | | printf("%d x %d \n", dim_w, dim_h); |
| | | args.w = dim_w; |
| | | args.h = dim_h; |
| | | |
| | | pthread_join(load_thread, 0); |
| | | train = buffer; |
| | |
| | | load_thread = load_data(args); |
| | | |
| | | for(i = 0; i < ngpus; ++i){ |
| | | resize_network(nets + i, dim, dim); |
| | | resize_network(nets + i, dim_w, dim_h); |
| | | } |
| | | net = nets[0]; |
| | | } |
| | | time=clock(); |
| | | time=what_time_is_it_now(); |
| | | pthread_join(load_thread, 0); |
| | | train = buffer; |
| | | load_thread = load_data(args); |
| | |
| | | save_image(im, "truth11"); |
| | | */ |
| | | |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | printf("Loaded: %lf seconds\n", (what_time_is_it_now()-time)); |
| | | |
| | | time=clock(); |
| | | time=what_time_is_it_now(); |
| | | float loss = 0; |
| | | #ifdef GPU |
| | | if(ngpus == 1){ |
| | |
| | | #else |
| | | loss = train_network(net, train); |
| | | #endif |
| | | if (avg_loss < 0) avg_loss = loss; |
| | | if (avg_loss < 0 || avg_loss != avg_loss) avg_loss = loss; // if(-inf or nan) |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | |
| | | i = get_current_batch(net); |
| | | printf("\n %d: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs); |
| | | printf("\n %d: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), loss, avg_loss, get_current_rate(net), (what_time_is_it_now()-time), i*imgs); |
| | | |
| | | #ifdef OPENCV |
| | | if(!dont_show) |
| | |
| | | sprintf(buff, "%s/%s_final.weights", backup_directory, base); |
| | | save_weights(net, buff); |
| | | |
| | | //cvReleaseImage(&img); |
| | | //cvDestroyAllWindows(); |
| | | #ifdef OPENCV |
| | | cvReleaseImage(&img); |
| | | cvDestroyAllWindows(); |
| | | #endif |
| | | |
| | | // free memory |
| | | pthread_join(load_thread, 0); |
| | | free_data(buffer); |
| | | |
| | | free(base); |
| | | free(paths); |
| | | free_list_contents(plist); |
| | | free_list(plist); |
| | | |
| | | free_list_contents_kvp(options); |
| | | free_list(options); |
| | | |
| | | free(nets); |
| | | free_network(net); |
| | | } |
| | | |
| | | |
| | |
| | | int *map = 0; |
| | | if (mapf) map = read_map(mapf); |
| | | |
| | | network net = parse_network_cfg_custom(cfgfile, 1); |
| | | network net = parse_network_cfg_custom(cfgfile, 1); // set batch=1 |
| | | if (weightfile) { |
| | | load_weights(&net, weightfile); |
| | | } |
| | | set_batch_network(&net, 1); |
| | | //set_batch_network(&net, 1); |
| | | fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | srand(time(0)); |
| | | |
| | |
| | | int nboxes = 0; |
| | | int letterbox = (args.type == LETTERBOX_DATA); |
| | | detection *dets = get_network_boxes(&net, w, h, thresh, .5, map, 0, &nboxes, letterbox); |
| | | if (nms) do_nms_sort_v3(dets, nboxes, classes, nms); |
| | | if (nms) do_nms_sort(dets, nboxes, classes, nms); |
| | | if (coco) { |
| | | print_cocos(fp, path, dets, nboxes, classes, w, h); |
| | | } |
| | |
| | | fprintf(fp, "\n]\n"); |
| | | fclose(fp); |
| | | } |
| | | fprintf(stderr, "Total Detection Time: %f Seconds\n", time(0) - start); |
| | | fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)time(0) - start); |
| | | } |
| | | |
| | | void validate_detector_recall(char *datacfg, char *cfgfile, char *weightfile) |
| | | { |
| | | network net = parse_network_cfg_custom(cfgfile, 1); |
| | | network net = parse_network_cfg_custom(cfgfile, 1); // set batch=1 |
| | | if (weightfile) { |
| | | load_weights(&net, weightfile); |
| | | } |
| | | set_batch_network(&net, 1); |
| | | //set_batch_network(&net, 1); |
| | | fuse_conv_batchnorm(net); |
| | | srand(time(0)); |
| | | |
| | | //list *plist = get_paths("data/coco_val_5k.list"); |
| | |
| | | int nboxes = 0; |
| | | int letterbox = 0; |
| | | detection *dets = get_network_boxes(&net, sized.w, sized.h, thresh, .5, 0, 1, &nboxes, letterbox); |
| | | if (nms) do_nms_obj_v3(dets, nboxes, 1, nms); |
| | | if (nms) do_nms_obj(dets, nboxes, 1, nms); |
| | | |
| | | char labelpath[4096]; |
| | | find_replace(path, "images", "labels", labelpath); |
| | | find_replace(labelpath, "JPEGImages", "labels", labelpath); |
| | | find_replace(labelpath, ".jpg", ".txt", labelpath); |
| | | find_replace(labelpath, ".JPEG", ".txt", labelpath); |
| | | replace_image_to_label(path, labelpath); |
| | | |
| | | int num_labels = 0; |
| | | box_label *truth = read_boxes(labelpath, &num_labels); |
| | |
| | | ++total; |
| | | box t = { truth[j].x, truth[j].y, truth[j].w, truth[j].h }; |
| | | float best_iou = 0; |
| | | for (k = 0; k < l.w*l.h*l.n; ++k) { |
| | | for (k = 0; k < nboxes; ++k) { |
| | | float iou = box_iou(dets[k].bbox, t); |
| | | if (dets[k].objectness > thresh && iou > best_iou) { |
| | | best_iou = iou; |
| | |
| | | ++correct; |
| | | } |
| | | } |
| | | |
| | | //fprintf(stderr, " %s - %s - ", paths[i], labelpath); |
| | | fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals / (i + 1), avg_iou * 100 / total, 100.*correct / total); |
| | | free(id); |
| | | free_image(orig); |
| | |
| | | char *mapf = option_find_str(options, "map", 0); |
| | | int *map = 0; |
| | | if (mapf) map = read_map(mapf); |
| | | FILE* reinforcement_fd = NULL; |
| | | |
| | | network net = parse_network_cfg_custom(cfgfile, 1); |
| | | network net = parse_network_cfg_custom(cfgfile, 1); // set batch=1 |
| | | if (weightfile) { |
| | | load_weights(&net, weightfile); |
| | | } |
| | | set_batch_network(&net, 1); |
| | | //set_batch_network(&net, 1); |
| | | fuse_conv_batchnorm(net); |
| | | srand(time(0)); |
| | | |
| | | list *plist = get_paths(valid_images); |
| | |
| | | int nboxes = 0; |
| | | int letterbox = (args.type == LETTERBOX_DATA); |
| | | float hier_thresh = 0; |
| | | detection *dets = get_network_boxes(&net, 1, 1, thresh, hier_thresh, 0, 1, &nboxes, letterbox); |
| | | if (nms) do_nms_sort_v3(dets, nboxes, l.classes, nms); |
| | | detection *dets = get_network_boxes(&net, 1, 1, thresh, hier_thresh, 0, 0, &nboxes, letterbox); |
| | | //detection *dets = get_network_boxes(&net, val[t].w, val[t].h, thresh, hier_thresh, 0, 1, &nboxes, letterbox); // for letterbox=1 |
| | | if (nms) do_nms_sort(dets, nboxes, l.classes, nms); |
| | | |
| | | char labelpath[4096]; |
| | | find_replace(path, "images", "labels", labelpath); |
| | | find_replace(labelpath, "JPEGImages", "labels", labelpath); |
| | | find_replace(labelpath, ".jpg", ".txt", labelpath); |
| | | find_replace(labelpath, ".JPEG", ".txt", labelpath); |
| | | find_replace(labelpath, ".png", ".txt", labelpath); |
| | | replace_image_to_label(path, labelpath); |
| | | int num_labels = 0; |
| | | box_label *truth = read_boxes(labelpath, &num_labels); |
| | | int i, j; |
| | |
| | | char *path_dif = paths_dif[image_index]; |
| | | |
| | | char labelpath_dif[4096]; |
| | | find_replace(path_dif, "images", "labels", labelpath_dif); |
| | | find_replace(labelpath_dif, "JPEGImages", "labels", labelpath_dif); |
| | | find_replace(labelpath_dif, ".jpg", ".txt", labelpath_dif); |
| | | find_replace(labelpath_dif, ".JPEG", ".txt", labelpath_dif); |
| | | find_replace(labelpath_dif, ".png", ".txt", labelpath_dif); |
| | | replace_image_to_label(path_dif, labelpath_dif); |
| | | |
| | | truth_dif = read_boxes(labelpath_dif, &num_labels_dif); |
| | | } |
| | | |
| | | const int checkpoint_detections_count = detections_count; |
| | | |
| | | for (i = 0; i < nboxes; ++i) { |
| | | |
| | | int class_id; |
| | |
| | | |
| | | // calc avg IoU, true-positives, false-positives for required Threshold |
| | | if (prob > thresh_calc_avg_iou) { |
| | | if (truth_index > -1) { |
| | | int z, found = 0; |
| | | for (z = checkpoint_detections_count; z < detections_count-1; ++z) |
| | | if (detections[z].unique_truth_index == truth_index) { |
| | | found = 1; break; |
| | | } |
| | | |
| | | if(truth_index > -1 && found == 0) { |
| | | avg_iou += max_iou; |
| | | ++tp_for_thresh; |
| | | } |
| | |
| | | } |
| | | } |
| | | } |
| | | |
| | | |
| | | unique_truth_count += num_labels; |
| | | |
| | | //static int previous_errors = 0; |
| | | //int total_errors = fp_for_thresh + (unique_truth_count - tp_for_thresh); |
| | | //int errors_in_this_image = total_errors - previous_errors; |
| | | //previous_errors = total_errors; |
| | | //if(reinforcement_fd == NULL) reinforcement_fd = fopen("reinforcement.txt", "wb"); |
| | | //char buff[1000]; |
| | | //sprintf(buff, "%s\n", path); |
| | | //if(errors_in_this_image > 0) fwrite(buff, sizeof(char), strlen(buff), reinforcement_fd); |
| | | |
| | | free_detections(dets, nboxes); |
| | | free(id); |
| | | free_image(val[t]); |
| | |
| | | } |
| | | } |
| | | |
| | | avg_iou = avg_iou / (tp_for_thresh + fp_for_thresh); |
| | | if((tp_for_thresh + fp_for_thresh) > 0) |
| | | avg_iou = avg_iou / (tp_for_thresh + fp_for_thresh); |
| | | |
| | | |
| | | // SORT(detections) |
| | |
| | | free(truth_classes_count); |
| | | |
| | | fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start)); |
| | | if (reinforcement_fd != NULL) fclose(reinforcement_fd); |
| | | } |
| | | |
| | | #ifdef OPENCV |
| | |
| | | { |
| | | anchors_t a = *(anchors_t *)pa; |
| | | anchors_t b = *(anchors_t *)pb; |
| | | float diff = b.w - a.w; |
| | | float diff = b.w*b.h - a.w*a.h; |
| | | if (diff < 0) return 1; |
| | | else if (diff > 0) return -1; |
| | | return 0; |
| | |
| | | void calc_anchors(char *datacfg, int num_of_clusters, int width, int height, int show) |
| | | { |
| | | printf("\n num_of_clusters = %d, width = %d, height = %d \n", num_of_clusters, width, height); |
| | | if (width < 0 || height < 0) { |
| | | printf("Usage: darknet detector calc_anchors data/voc.data -num_of_clusters 9 -width 416 -height 416 \n"); |
| | | printf("Error: set width and height \n"); |
| | | return; |
| | | } |
| | | |
| | | //float pointsdata[] = { 1,1, 2,2, 6,6, 5,5, 10,10 }; |
| | | float *rel_width_height_array = calloc(1000, sizeof(float)); |
| | |
| | | for (i = 0; i < number_of_images; ++i) { |
| | | char *path = paths[i]; |
| | | char labelpath[4096]; |
| | | find_replace(path, "images", "labels", labelpath); |
| | | find_replace(labelpath, "JPEGImages", "labels", labelpath); |
| | | find_replace(labelpath, ".jpg", ".txt", labelpath); |
| | | find_replace(labelpath, ".JPEG", ".txt", labelpath); |
| | | find_replace(labelpath, ".png", ".txt", labelpath); |
| | | replace_image_to_label(path, labelpath); |
| | | |
| | | int num_labels = 0; |
| | | box_label *truth = read_boxes(labelpath, &num_labels); |
| | | //printf(" new path: %s \n", labelpath); |
| | |
| | | } |
| | | #endif // OPENCV |
| | | |
| | | void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, float hier_thresh, int dont_show) |
| | | void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, |
| | | float hier_thresh, int dont_show, int ext_output, int save_labels) |
| | | { |
| | | list *options = read_data_cfg(datacfg); |
| | | char *name_list = option_find_str(options, "names", "data/names.list"); |
| | | char **names = get_labels(name_list); |
| | | |
| | | image **alphabet = load_alphabet(); |
| | | network net = parse_network_cfg_custom(cfgfile, 1); |
| | | network net = parse_network_cfg_custom(cfgfile, 1); // set batch=1 |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | set_batch_network(&net, 1); |
| | | //set_batch_network(&net, 1); |
| | | fuse_conv_batchnorm(net); |
| | | srand(2222222); |
| | | clock_t time; |
| | | double time; |
| | | char buff[256]; |
| | | char *input = buff; |
| | | int j; |
| | |
| | | while(1){ |
| | | if(filename){ |
| | | strncpy(input, filename, 256); |
| | | if (input[strlen(input) - 1] == 0x0d) input[strlen(input) - 1] = 0; |
| | | if(strlen(input) > 0) |
| | | if (input[strlen(input) - 1] == 0x0d) input[strlen(input) - 1] = 0; |
| | | } else { |
| | | printf("Enter Image Path: "); |
| | | fflush(stdout); |
| | |
| | | } |
| | | image im = load_image_color(input,0,0); |
| | | int letterbox = 0; |
| | | image sized = resize_image(im, net.w, net.h); |
| | | //image sized = letterbox_image(im, net.w, net.h); letterbox = 1; |
| | | //image sized = resize_image(im, net.w, net.h); |
| | | image sized = letterbox_image(im, net.w, net.h); letterbox = 1; |
| | | layer l = net.layers[net.n-1]; |
| | | |
| | | //box *boxes = calloc(l.w*l.h*l.n, sizeof(box)); |
| | |
| | | //for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *)); |
| | | |
| | | float *X = sized.data; |
| | | time=clock(); |
| | | time= what_time_is_it_now(); |
| | | network_predict(net, X); |
| | | printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); |
| | | //network_predict_image(&net, im); letterbox = 1; |
| | | printf("%s: Predicted in %f seconds.\n", input, (what_time_is_it_now()-time)); |
| | | //get_region_boxes(l, 1, 1, thresh, probs, boxes, 0, 0); |
| | | // if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, l.classes, nms); |
| | | // if (nms) do_nms_sort_v2(boxes, probs, l.w*l.h*l.n, l.classes, nms); |
| | | //draw_detections(im, l.w*l.h*l.n, thresh, boxes, probs, names, alphabet, l.classes); |
| | | int nboxes = 0; |
| | | detection *dets = get_network_boxes(&net, im.w, im.h, thresh, hier_thresh, 0, 1, &nboxes, letterbox); |
| | | if (nms) do_nms_sort_v3(dets, nboxes, l.classes, nms); |
| | | draw_detections_v3(im, dets, nboxes, thresh, names, alphabet, l.classes); |
| | | free_detections(dets, nboxes); |
| | | if (nms) do_nms_sort(dets, nboxes, l.classes, nms); |
| | | draw_detections_v3(im, dets, nboxes, thresh, names, alphabet, l.classes, ext_output); |
| | | save_image(im, "predictions"); |
| | | if (!dont_show) { |
| | | show_image(im, "predictions"); |
| | | } |
| | | |
| | | // pseudo labeling concept - fast.ai |
| | | if(save_labels) |
| | | { |
| | | char labelpath[4096]; |
| | | replace_image_to_label(input, labelpath); |
| | | |
| | | FILE* fw = fopen(labelpath, "wb"); |
| | | int i; |
| | | for (i = 0; i < nboxes; ++i) { |
| | | char buff[1024]; |
| | | int class_id = -1; |
| | | float prob = 0; |
| | | for (j = 0; j < l.classes; ++j) { |
| | | if (dets[i].prob[j] > thresh && dets[i].prob[j] > prob) { |
| | | prob = dets[i].prob[j]; |
| | | class_id = j; |
| | | } |
| | | } |
| | | if (class_id >= 0) { |
| | | sprintf(buff, "%d %2.4f %2.4f %2.4f %2.4f\n", class_id, dets[i].bbox.x, dets[i].bbox.y, dets[i].bbox.w, dets[i].bbox.h); |
| | | fwrite(buff, sizeof(char), strlen(buff), fw); |
| | | } |
| | | } |
| | | fclose(fw); |
| | | } |
| | | |
| | | free_detections(dets, nboxes); |
| | | free_image(im); |
| | | free_image(sized); |
| | | //free(boxes); |
| | |
| | | #endif |
| | | if (filename) break; |
| | | } |
| | | |
| | | // free memory |
| | | free_ptrs(names, net.layers[net.n - 1].classes); |
| | | free_list_contents_kvp(options); |
| | | free_list(options); |
| | | |
| | | int i; |
| | | const int nsize = 8; |
| | | for (j = 0; j < nsize; ++j) { |
| | | for (i = 32; i < 127; ++i) { |
| | | free_image(alphabet[j][i]); |
| | | } |
| | | free(alphabet[j]); |
| | | } |
| | | free(alphabet); |
| | | |
| | | free_network(net); |
| | | } |
| | | |
| | | void run_detector(int argc, char **argv) |
| | |
| | | int cam_index = find_int_arg(argc, argv, "-c", 0); |
| | | int frame_skip = find_int_arg(argc, argv, "-s", 0); |
| | | int num_of_clusters = find_int_arg(argc, argv, "-num_of_clusters", 5); |
| | | int width = find_int_arg(argc, argv, "-width", 13); |
| | | int heigh = find_int_arg(argc, argv, "-heigh", 13); |
| | | int width = find_int_arg(argc, argv, "-width", -1); |
| | | int height = find_int_arg(argc, argv, "-height", -1); |
| | | // extended output in test mode (output of rect bound coords) |
| | | // and for recall mode (extended output table-like format with results for best_class fit) |
| | | int ext_output = find_arg(argc, argv, "-ext_output"); |
| | | int save_labels = find_arg(argc, argv, "-save_labels"); |
| | | if(argc < 4){ |
| | | fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); |
| | | return; |
| | |
| | | char *cfg = argv[4]; |
| | | char *weights = (argc > 5) ? argv[5] : 0; |
| | | if(weights) |
| | | if (weights[strlen(weights) - 1] == 0x0d) weights[strlen(weights) - 1] = 0; |
| | | if(strlen(weights) > 0) |
| | | if (weights[strlen(weights) - 1] == 0x0d) weights[strlen(weights) - 1] = 0; |
| | | char *filename = (argc > 6) ? argv[6]: 0; |
| | | if(0==strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh, hier_thresh, dont_show); |
| | | if(0==strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh, hier_thresh, dont_show, ext_output, save_labels); |
| | | else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear, dont_show); |
| | | else if(0==strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights, outfile); |
| | | else if(0==strcmp(argv[2], "recall")) validate_detector_recall(datacfg, cfg, weights); |
| | | else if(0==strcmp(argv[2], "map")) validate_detector_map(datacfg, cfg, weights, thresh); |
| | | else if(0==strcmp(argv[2], "calc_anchors")) calc_anchors(datacfg, num_of_clusters, width, heigh, show); |
| | | else if(0==strcmp(argv[2], "calc_anchors")) calc_anchors(datacfg, num_of_clusters, width, height, show); |
| | | else if(0==strcmp(argv[2], "demo")) { |
| | | list *options = read_data_cfg(datacfg); |
| | | int classes = option_find_int(options, "classes", 20); |
| | | char *name_list = option_find_str(options, "names", "data/names.list"); |
| | | char **names = get_labels(name_list); |
| | | if(filename) |
| | | if (filename[strlen(filename) - 1] == 0x0d) filename[strlen(filename) - 1] = 0; |
| | | if(strlen(filename) > 0) |
| | | if (filename[strlen(filename) - 1] == 0x0d) filename[strlen(filename) - 1] = 0; |
| | | demo(cfg, weights, thresh, hier_thresh, cam_index, filename, names, classes, frame_skip, prefix, out_filename, |
| | | http_stream_port, dont_show); |
| | | http_stream_port, dont_show, ext_output); |
| | | |
| | | free_list_contents_kvp(options); |
| | | free_list(options); |
| | | } |
| | | else printf(" There isn't such command: %s", argv[2]); |
| | | } |