| | |
| | | l.outputs = l.out_h * l.out_w * l.out_c; |
| | | l.inputs = l.w * l.h * l.c; |
| | | |
| | | l.filters = calloc(c*n*size*size*locations, sizeof(float)); |
| | | l.filter_updates = calloc(c*n*size*size*locations, sizeof(float)); |
| | | l.weights = calloc(c*n*size*size*locations, sizeof(float)); |
| | | l.weight_updates = calloc(c*n*size*size*locations, sizeof(float)); |
| | | |
| | | l.biases = calloc(l.outputs, sizeof(float)); |
| | | l.bias_updates = calloc(l.outputs, sizeof(float)); |
| | | |
| | | // float scale = 1./sqrt(size*size*c); |
| | | float scale = sqrt(2./(size*size*c)); |
| | | for(i = 0; i < c*n*size*size; ++i) l.filters[i] = scale*rand_uniform(-1,1); |
| | | for(i = 0; i < c*n*size*size; ++i) l.weights[i] = scale*rand_uniform(-1,1); |
| | | |
| | | l.col_image = calloc(out_h*out_w*size*size*c, sizeof(float)); |
| | | l.output = calloc(l.batch*out_h * out_w * n, sizeof(float)); |
| | | l.delta = calloc(l.batch*out_h * out_w * n, sizeof(float)); |
| | | |
| | | l.forward = forward_local_layer; |
| | | l.backward = backward_local_layer; |
| | | l.update = update_local_layer; |
| | | |
| | | #ifdef GPU |
| | | l.filters_gpu = cuda_make_array(l.filters, c*n*size*size*locations); |
| | | l.filter_updates_gpu = cuda_make_array(l.filter_updates, c*n*size*size*locations); |
| | | l.forward_gpu = forward_local_layer_gpu; |
| | | l.backward_gpu = backward_local_layer_gpu; |
| | | l.update_gpu = update_local_layer_gpu; |
| | | |
| | | l.weights_gpu = cuda_make_array(l.weights, c*n*size*size*locations); |
| | | l.weight_updates_gpu = cuda_make_array(l.weight_updates, c*n*size*size*locations); |
| | | |
| | | l.biases_gpu = cuda_make_array(l.biases, l.outputs); |
| | | l.bias_updates_gpu = cuda_make_array(l.bias_updates, l.outputs); |
| | |
| | | l.size, l.stride, l.pad, l.col_image); |
| | | float *output = l.output + i*l.outputs; |
| | | for(j = 0; j < locations; ++j){ |
| | | float *a = l.filters + j*l.size*l.size*l.c*l.n; |
| | | float *a = l.weights + j*l.size*l.size*l.c*l.n; |
| | | float *b = l.col_image + j; |
| | | float *c = output + j; |
| | | |
| | |
| | | for(j = 0; j < locations; ++j){ |
| | | float *a = l.delta + i*l.outputs + j; |
| | | float *b = l.col_image + j; |
| | | float *c = l.filter_updates + j*l.size*l.size*l.c*l.n; |
| | | float *c = l.weight_updates + j*l.size*l.size*l.c*l.n; |
| | | int m = l.n; |
| | | int n = l.size*l.size*l.c; |
| | | int k = 1; |
| | |
| | | |
| | | if(state.delta){ |
| | | for(j = 0; j < locations; ++j){ |
| | | float *a = l.filters + j*l.size*l.size*l.c*l.n; |
| | | float *a = l.weights + j*l.size*l.size*l.c*l.n; |
| | | float *b = l.delta + i*l.outputs + j; |
| | | float *c = l.col_image + j; |
| | | |
| | |
| | | axpy_cpu(l.outputs, learning_rate/batch, l.bias_updates, 1, l.biases, 1); |
| | | scal_cpu(l.outputs, momentum, l.bias_updates, 1); |
| | | |
| | | axpy_cpu(size, -decay*batch, l.filters, 1, l.filter_updates, 1); |
| | | axpy_cpu(size, learning_rate/batch, l.filter_updates, 1, l.filters, 1); |
| | | scal_cpu(size, momentum, l.filter_updates, 1); |
| | | axpy_cpu(size, -decay*batch, l.weights, 1, l.weight_updates, 1); |
| | | axpy_cpu(size, learning_rate/batch, l.weight_updates, 1, l.weights, 1); |
| | | scal_cpu(size, momentum, l.weight_updates, 1); |
| | | } |
| | | |
| | | #ifdef GPU |
| | |
| | | l.size, l.stride, l.pad, l.col_image_gpu); |
| | | float *output = l.output_gpu + i*l.outputs; |
| | | for(j = 0; j < locations; ++j){ |
| | | float *a = l.filters_gpu + j*l.size*l.size*l.c*l.n; |
| | | float *a = l.weights_gpu + j*l.size*l.size*l.c*l.n; |
| | | float *b = l.col_image_gpu + j; |
| | | float *c = output + j; |
| | | |
| | |
| | | for(j = 0; j < locations; ++j){ |
| | | float *a = l.delta_gpu + i*l.outputs + j; |
| | | float *b = l.col_image_gpu + j; |
| | | float *c = l.filter_updates_gpu + j*l.size*l.size*l.c*l.n; |
| | | float *c = l.weight_updates_gpu + j*l.size*l.size*l.c*l.n; |
| | | int m = l.n; |
| | | int n = l.size*l.size*l.c; |
| | | int k = 1; |
| | |
| | | |
| | | if(state.delta){ |
| | | for(j = 0; j < locations; ++j){ |
| | | float *a = l.filters_gpu + j*l.size*l.size*l.c*l.n; |
| | | float *a = l.weights_gpu + j*l.size*l.size*l.c*l.n; |
| | | float *b = l.delta_gpu + i*l.outputs + j; |
| | | float *c = l.col_image_gpu + j; |
| | | |
| | |
| | | axpy_ongpu(l.outputs, learning_rate/batch, l.bias_updates_gpu, 1, l.biases_gpu, 1); |
| | | scal_ongpu(l.outputs, momentum, l.bias_updates_gpu, 1); |
| | | |
| | | axpy_ongpu(size, -decay*batch, l.filters_gpu, 1, l.filter_updates_gpu, 1); |
| | | axpy_ongpu(size, learning_rate/batch, l.filter_updates_gpu, 1, l.filters_gpu, 1); |
| | | scal_ongpu(size, momentum, l.filter_updates_gpu, 1); |
| | | axpy_ongpu(size, -decay*batch, l.weights_gpu, 1, l.weight_updates_gpu, 1); |
| | | axpy_ongpu(size, learning_rate/batch, l.weight_updates_gpu, 1, l.weights_gpu, 1); |
| | | scal_ongpu(size, momentum, l.weight_updates_gpu, 1); |
| | | } |
| | | |
| | | void pull_local_layer(local_layer l) |
| | | { |
| | | int locations = l.out_w*l.out_h; |
| | | int size = l.size*l.size*l.c*l.n*locations; |
| | | cuda_pull_array(l.filters_gpu, l.filters, size); |
| | | cuda_pull_array(l.weights_gpu, l.weights, size); |
| | | cuda_pull_array(l.biases_gpu, l.biases, l.outputs); |
| | | } |
| | | |
| | |
| | | { |
| | | int locations = l.out_w*l.out_h; |
| | | int size = l.size*l.size*l.c*l.n*locations; |
| | | cuda_push_array(l.filters_gpu, l.filters, size); |
| | | cuda_push_array(l.weights_gpu, l.weights, size); |
| | | cuda_push_array(l.biases_gpu, l.biases, l.outputs); |
| | | } |
| | | #endif |