| | |
| | | #include "utils.h" |
| | | #include "parser.h" |
| | | |
| | | #ifdef OPENCV |
| | | #include "opencv2/highgui/highgui_c.h" |
| | | #endif |
| | | |
| | | void train_imagenet(char *cfgfile, char *weightfile) |
| | | { |
| | | data_seed = time(0); |
| | | srand(time(0)); |
| | | float avg_loss = -1; |
| | | char *base = basecfg(cfgfile); |
| | | char *backup_directory = "/home/pjreddie/backup/"; |
| | | printf("%s\n", base); |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | //net.seen=0; |
| | | int imgs = 1024; |
| | | int i = net.seen/imgs; |
| | | char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); |
| | | char **labels = get_labels("data/inet.labels.list"); |
| | | list *plist = get_paths("/data/imagenet/cls.train.list"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | printf("%d\n", plist->size); |
| | | int N = plist->size; |
| | | clock_t time; |
| | | pthread_t load_thread; |
| | | data train; |
| | | data buffer; |
| | | load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 256, 256, &buffer); |
| | | while(1){ |
| | | ++i; |
| | | |
| | | load_args args = {0}; |
| | | args.w = net.w; |
| | | args.h = net.h; |
| | | args.paths = paths; |
| | | args.classes = 1000; |
| | | args.n = imgs; |
| | | args.m = N; |
| | | args.labels = labels; |
| | | args.d = &buffer; |
| | | args.type = CLASSIFICATION_DATA; |
| | | |
| | | load_thread = load_data_in_thread(args); |
| | | int epoch = (*net.seen)/N; |
| | | while(get_current_batch(net) < net.max_batches || net.max_batches == 0){ |
| | | time=clock(); |
| | | pthread_join(load_thread, 0); |
| | | train = buffer; |
| | | |
| | | /* |
| | | /* |
| | | image im = float_to_image(256, 256, 3, train.X.vals[114]); |
| | | show_image(im, "training"); |
| | | cvWaitKey(0); |
| | | */ |
| | | |
| | | load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 256, 256, &buffer); |
| | | load_thread = load_data_in_thread(args); |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | | float loss = train_network(net, train); |
| | | net.seen += imgs; |
| | | if(avg_loss == -1) avg_loss = loss; |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), net.seen); |
| | | printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen); |
| | | free_data(train); |
| | | if((i % 20000) == 0) net.learning_rate *= .1; |
| | | //if(i%100 == 0 && net.learning_rate > .00001) net.learning_rate *= .97; |
| | | if(i%1000==0){ |
| | | if(*net.seen/N > epoch){ |
| | | epoch = *net.seen/N; |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i); |
| | | sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch); |
| | | save_weights(net, buff); |
| | | } |
| | | } |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s.weights", backup_directory, base); |
| | | save_weights(net, buff); |
| | | |
| | | pthread_join(load_thread, 0); |
| | | free_data(buffer); |
| | | free_network(net); |
| | | free_ptrs((void**)labels, 1000); |
| | | free_ptrs((void**)paths, plist->size); |
| | | free_list(plist); |
| | | free(base); |
| | | } |
| | | |
| | | void validate_imagenet(char *filename, char *weightfile) |
| | |
| | | } |
| | | srand(time(0)); |
| | | |
| | | char **labels = get_labels("/home/pjreddie/data/imagenet/cls.val.labels.list"); |
| | | char **labels = get_labels("data/inet.labels.list"); |
| | | list *plist = get_paths("data/inet.val.list"); |
| | | |
| | | list *plist = get_paths("/data/imagenet/cls.val.list"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | int m = plist->size; |
| | | free_list(plist); |
| | |
| | | int num = (i+1)*m/splits - i*m/splits; |
| | | |
| | | data val, buffer; |
| | | pthread_t load_thread = load_data_thread(paths, num, 0, labels, 1000, 256, 256, &buffer); |
| | | |
| | | load_args args = {0}; |
| | | args.w = net.w; |
| | | args.h = net.h; |
| | | args.paths = paths; |
| | | args.classes = 1000; |
| | | args.n = num; |
| | | args.m = 0; |
| | | args.labels = labels; |
| | | args.d = &buffer; |
| | | args.type = CLASSIFICATION_DATA; |
| | | |
| | | pthread_t load_thread = load_data_in_thread(args); |
| | | for(i = 1; i <= splits; ++i){ |
| | | time=clock(); |
| | | |
| | |
| | | |
| | | num = (i+1)*m/splits - i*m/splits; |
| | | char **part = paths+(i*m/splits); |
| | | if(i != splits) load_thread = load_data_thread(part, num, 0, labels, 1000, 256, 256, &buffer); |
| | | if(i != splits){ |
| | | args.paths = part; |
| | | load_thread = load_data_in_thread(args); |
| | | } |
| | | printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time)); |
| | | |
| | | time=clock(); |
| | |
| | | } |
| | | } |
| | | |
| | | void test_imagenet(char *cfgfile, char *weightfile) |
| | | void test_imagenet(char *cfgfile, char *weightfile, char *filename) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | set_batch_network(&net, 1); |
| | | //imgs=1; |
| | | srand(2222222); |
| | | int i = 0; |
| | | char **names = get_labels("cfg/shortnames.txt"); |
| | | char **names = get_labels("data/shortnames.txt"); |
| | | clock_t time; |
| | | char filename[256]; |
| | | char input[256]; |
| | | int indexes[10]; |
| | | while(1){ |
| | | fgets(filename, 256, stdin); |
| | | strtok(filename, "\n"); |
| | | image im = load_image_color(filename, 256, 256); |
| | | scale_image(im, 2.); |
| | | translate_image(im, -1.); |
| | | printf("%d %d %d\n", im.h, im.w, im.c); |
| | | if(filename){ |
| | | strncpy(input, filename, 256); |
| | | }else{ |
| | | printf("Enter Image Path: "); |
| | | fflush(stdout); |
| | | fgets(input, 256, stdin); |
| | | strtok(input, "\n"); |
| | | } |
| | | image im = load_image_color(input, 256, 256); |
| | | float *X = im.data; |
| | | time=clock(); |
| | | float *predictions = network_predict(net, X); |
| | | top_predictions(net, 10, indexes); |
| | | printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time)); |
| | | printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); |
| | | for(i = 0; i < 10; ++i){ |
| | | int index = indexes[i]; |
| | | printf("%s: %f\n", names[index], predictions[index]); |
| | | } |
| | | free_image(im); |
| | | if (filename) break; |
| | | } |
| | | } |
| | | |
| | |
| | | |
| | | char *cfg = argv[3]; |
| | | char *weights = (argc > 4) ? argv[4] : 0; |
| | | if(0==strcmp(argv[2], "test")) test_imagenet(cfg, weights); |
| | | char *filename = (argc > 5) ? argv[5]: 0; |
| | | if(0==strcmp(argv[2], "test")) test_imagenet(cfg, weights, filename); |
| | | else if(0==strcmp(argv[2], "train")) train_imagenet(cfg, weights); |
| | | else if(0==strcmp(argv[2], "valid")) validate_imagenet(cfg, weights); |
| | | } |