Joseph Redmon
2015-09-05 b5936b499abc94c0efffbcc99b5698574b59d860
src/network.c
@@ -20,6 +20,30 @@
#include "dropout_layer.h"
#include "route_layer.h"
int get_current_batch(network net)
{
    int batch_num = (*net.seen)/(net.batch*net.subdivisions);
    return batch_num;
}
float get_current_rate(network net)
{
    int batch_num = get_current_batch(net);
    switch (net.policy) {
        case CONSTANT:
            return net.learning_rate;
        case STEP:
            return net.learning_rate * pow(net.gamma, batch_num/net.step);
        case EXP:
            return net.learning_rate * pow(net.gamma, batch_num);
        case POLY:
            return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power);
        default:
            fprintf(stderr, "Policy is weird!\n");
            return net.learning_rate;
    }
}
char *get_layer_string(LAYER_TYPE a)
{
    switch(a){
@@ -60,6 +84,7 @@
    network net = {0};
    net.n = n;
    net.layers = calloc(net.n, sizeof(layer));
    net.seen = calloc(1, sizeof(int));
    #ifdef GPU
    net.input_gpu = calloc(1, sizeof(float *));
    net.truth_gpu = calloc(1, sizeof(float *));
@@ -110,14 +135,15 @@
{
    int i;
    int update_batch = net.batch*net.subdivisions;
    float rate = get_current_rate(net);
    for(i = 0; i < net.n; ++i){
        layer l = net.layers[i];
        if(l.type == CONVOLUTIONAL){
            update_convolutional_layer(l, update_batch, net.learning_rate, net.momentum, net.decay);
            update_convolutional_layer(l, update_batch, rate, net.momentum, net.decay);
        } else if(l.type == DECONVOLUTIONAL){
            update_deconvolutional_layer(l, net.learning_rate, net.momentum, net.decay);
            update_deconvolutional_layer(l, rate, net.momentum, net.decay);
        } else if(l.type == CONNECTED){
            update_connected_layer(l, update_batch, net.learning_rate, net.momentum, net.decay);
            update_connected_layer(l, update_batch, rate, net.momentum, net.decay);
        }
    }
}
@@ -203,6 +229,7 @@
float train_network_datum(network net, float *x, float *y)
{
    *net.seen += net.batch;
#ifdef GPU
    if(gpu_index >= 0) return train_network_datum_gpu(net, x, y);
#endif
@@ -214,7 +241,7 @@
    forward_network(net, state);
    backward_network(net, state);
    float error = get_network_cost(net);
    if((net.seen/net.batch)%net.subdivisions == 0) update_network(net);
    if(((*net.seen)/net.batch)%net.subdivisions == 0) update_network(net);
    return error;
}
@@ -227,7 +254,6 @@
    int i;
    float sum = 0;
    for(i = 0; i < n; ++i){
        net.seen += batch;
        get_random_batch(d, batch, X, y);
        float err = train_network_datum(net, X, y);
        sum += err;
@@ -248,7 +274,6 @@
    float sum = 0;
    for(i = 0; i < n; ++i){
        get_next_batch(d, batch, i*batch, X, y);
        net.seen += batch;
        float err = train_network_datum(net, X, y);
        sum += err;
    }
@@ -519,4 +544,17 @@
    return acc;
}
void free_network(network net)
{
    int i;
    for(i = 0; i < net.n; ++i){
        free_layer(net.layers[i]);
    }
    free(net.layers);
    #ifdef GPU
    if(*net.input_gpu) cuda_free(*net.input_gpu);
    if(*net.truth_gpu) cuda_free(*net.truth_gpu);
    if(net.input_gpu) free(net.input_gpu);
    if(net.truth_gpu) free(net.truth_gpu);
    #endif
}