| | |
| | | |
| | | #include "parser.h" |
| | | #include "activations.h" |
| | | #include "crop_layer.h" |
| | | #include "cost_layer.h" |
| | | #include "convolutional_layer.h" |
| | | #include "normalization_layer.h" |
| | | #include "deconvolutional_layer.h" |
| | | #include "connected_layer.h" |
| | | #include "maxpool_layer.h" |
| | | #include "softmax_layer.h" |
| | | #include "dropout_layer.h" |
| | | #include "detection_layer.h" |
| | | #include "region_layer.h" |
| | | #include "avgpool_layer.h" |
| | | #include "route_layer.h" |
| | | #include "list.h" |
| | | #include "option_list.h" |
| | | #include "utils.h" |
| | |
| | | list *options; |
| | | }section; |
| | | |
| | | int is_network(section *s); |
| | | int is_convolutional(section *s); |
| | | int is_deconvolutional(section *s); |
| | | int is_connected(section *s); |
| | | int is_maxpool(section *s); |
| | | int is_avgpool(section *s); |
| | | int is_dropout(section *s); |
| | | int is_softmax(section *s); |
| | | int is_normalization(section *s); |
| | | int is_crop(section *s); |
| | | int is_cost(section *s); |
| | | int is_detection(section *s); |
| | | int is_region(section *s); |
| | | int is_route(section *s); |
| | | list *read_cfg(char *filename); |
| | | |
| | | void free_section(section *s) |
| | | { |
| | | free(s->type); |
| | | node *n = s->options->front; |
| | | while(n){ |
| | | kvp *pair = (kvp *)n->val; |
| | | free(pair->key); |
| | | free(pair); |
| | | node *next = n->next; |
| | | free(n); |
| | | n = next; |
| | | } |
| | | free(s->options); |
| | | free(s); |
| | | } |
| | | |
| | | void parse_data(char *data, float *a, int n) |
| | | { |
| | | int i; |
| | | if(!data) return; |
| | | char *curr = data; |
| | | char *next = data; |
| | | int done = 0; |
| | | for(i = 0; i < n && !done; ++i){ |
| | | while(*++next !='\0' && *next != ','); |
| | | if(*next == '\0') done = 1; |
| | | *next = '\0'; |
| | | sscanf(curr, "%g", &a[i]); |
| | | curr = next+1; |
| | | } |
| | | } |
| | | |
| | | typedef struct size_params{ |
| | | int batch; |
| | | int inputs; |
| | | int h; |
| | | int w; |
| | | int c; |
| | | } size_params; |
| | | |
| | | deconvolutional_layer parse_deconvolutional(list *options, size_params params) |
| | | { |
| | | int n = option_find_int(options, "filters",1); |
| | | int size = option_find_int(options, "size",1); |
| | | int stride = option_find_int(options, "stride",1); |
| | | char *activation_s = option_find_str(options, "activation", "logistic"); |
| | | ACTIVATION activation = get_activation(activation_s); |
| | | |
| | | int batch,h,w,c; |
| | | h = params.h; |
| | | w = params.w; |
| | | c = params.c; |
| | | batch=params.batch; |
| | | if(!(h && w && c)) error("Layer before deconvolutional layer must output image."); |
| | | |
| | | deconvolutional_layer layer = make_deconvolutional_layer(batch,h,w,c,n,size,stride,activation); |
| | | |
| | | char *weights = option_find_str(options, "weights", 0); |
| | | char *biases = option_find_str(options, "biases", 0); |
| | | parse_data(weights, layer.filters, c*n*size*size); |
| | | parse_data(biases, layer.biases, n); |
| | | #ifdef GPU |
| | | if(weights || biases) push_deconvolutional_layer(layer); |
| | | #endif |
| | | return layer; |
| | | } |
| | | |
| | | convolutional_layer parse_convolutional(list *options, size_params params) |
| | | { |
| | | int n = option_find_int(options, "filters",1); |
| | | int size = option_find_int(options, "size",1); |
| | | int stride = option_find_int(options, "stride",1); |
| | | int pad = option_find_int(options, "pad",0); |
| | | char *activation_s = option_find_str(options, "activation", "logistic"); |
| | | ACTIVATION activation = get_activation(activation_s); |
| | | |
| | | int batch,h,w,c; |
| | | h = params.h; |
| | | w = params.w; |
| | | c = params.c; |
| | | batch=params.batch; |
| | | if(!(h && w && c)) error("Layer before convolutional layer must output image."); |
| | | |
| | | convolutional_layer layer = make_convolutional_layer(batch,h,w,c,n,size,stride,pad,activation); |
| | | |
| | | char *weights = option_find_str(options, "weights", 0); |
| | | char *biases = option_find_str(options, "biases", 0); |
| | | parse_data(weights, layer.filters, c*n*size*size); |
| | | parse_data(biases, layer.biases, n); |
| | | #ifdef GPU |
| | | if(weights || biases) push_convolutional_layer(layer); |
| | | #endif |
| | | return layer; |
| | | } |
| | | |
| | | connected_layer parse_connected(list *options, size_params params) |
| | | { |
| | | int output = option_find_int(options, "output",1); |
| | | char *activation_s = option_find_str(options, "activation", "logistic"); |
| | | ACTIVATION activation = get_activation(activation_s); |
| | | |
| | | connected_layer layer = make_connected_layer(params.batch, params.inputs, output, activation); |
| | | |
| | | char *weights = option_find_str(options, "weights", 0); |
| | | char *biases = option_find_str(options, "biases", 0); |
| | | parse_data(biases, layer.biases, output); |
| | | parse_data(weights, layer.weights, params.inputs*output); |
| | | #ifdef GPU |
| | | if(weights || biases) push_connected_layer(layer); |
| | | #endif |
| | | return layer; |
| | | } |
| | | |
| | | softmax_layer parse_softmax(list *options, size_params params) |
| | | { |
| | | int groups = option_find_int(options, "groups",1); |
| | | softmax_layer layer = make_softmax_layer(params.batch, params.inputs, groups); |
| | | return layer; |
| | | } |
| | | |
| | | detection_layer parse_detection(list *options, size_params params) |
| | | { |
| | | int coords = option_find_int(options, "coords", 1); |
| | | int classes = option_find_int(options, "classes", 1); |
| | | int rescore = option_find_int(options, "rescore", 0); |
| | | int joint = option_find_int(options, "joint", 0); |
| | | int objectness = option_find_int(options, "objectness", 0); |
| | | int background = 0; |
| | | detection_layer layer = make_detection_layer(params.batch, params.inputs, classes, coords, joint, rescore, background, objectness); |
| | | return layer; |
| | | } |
| | | |
| | | region_layer parse_region(list *options, size_params params) |
| | | { |
| | | int coords = option_find_int(options, "coords", 1); |
| | | int classes = option_find_int(options, "classes", 1); |
| | | int rescore = option_find_int(options, "rescore", 0); |
| | | int num = option_find_int(options, "num", 1); |
| | | int side = option_find_int(options, "side", 7); |
| | | region_layer layer = make_region_layer(params.batch, params.inputs, num, side, classes, coords, rescore); |
| | | return layer; |
| | | } |
| | | |
| | | cost_layer parse_cost(list *options, size_params params) |
| | | { |
| | | char *type_s = option_find_str(options, "type", "sse"); |
| | | COST_TYPE type = get_cost_type(type_s); |
| | | float scale = option_find_float_quiet(options, "scale",1); |
| | | cost_layer layer = make_cost_layer(params.batch, params.inputs, type, scale); |
| | | return layer; |
| | | } |
| | | |
| | | crop_layer parse_crop(list *options, size_params params) |
| | | { |
| | | int crop_height = option_find_int(options, "crop_height",1); |
| | | int crop_width = option_find_int(options, "crop_width",1); |
| | | int flip = option_find_int(options, "flip",0); |
| | | float angle = option_find_float(options, "angle",0); |
| | | float saturation = option_find_float(options, "saturation",1); |
| | | float exposure = option_find_float(options, "exposure",1); |
| | | |
| | | int batch,h,w,c; |
| | | h = params.h; |
| | | w = params.w; |
| | | c = params.c; |
| | | batch=params.batch; |
| | | if(!(h && w && c)) error("Layer before crop layer must output image."); |
| | | |
| | | int noadjust = option_find_int_quiet(options, "noadjust",0); |
| | | |
| | | crop_layer l = make_crop_layer(batch,h,w,c,crop_height,crop_width,flip, angle, saturation, exposure); |
| | | l.noadjust = noadjust; |
| | | return l; |
| | | } |
| | | |
| | | maxpool_layer parse_maxpool(list *options, size_params params) |
| | | { |
| | | int stride = option_find_int(options, "stride",1); |
| | | int size = option_find_int(options, "size",stride); |
| | | |
| | | int batch,h,w,c; |
| | | h = params.h; |
| | | w = params.w; |
| | | c = params.c; |
| | | batch=params.batch; |
| | | if(!(h && w && c)) error("Layer before maxpool layer must output image."); |
| | | |
| | | maxpool_layer layer = make_maxpool_layer(batch,h,w,c,size,stride); |
| | | return layer; |
| | | } |
| | | |
| | | avgpool_layer parse_avgpool(list *options, size_params params) |
| | | { |
| | | int batch,w,h,c; |
| | | w = params.w; |
| | | h = params.h; |
| | | c = params.c; |
| | | batch=params.batch; |
| | | if(!(h && w && c)) error("Layer before avgpool layer must output image."); |
| | | |
| | | avgpool_layer layer = make_avgpool_layer(batch,w,h,c); |
| | | return layer; |
| | | } |
| | | |
| | | dropout_layer parse_dropout(list *options, size_params params) |
| | | { |
| | | float probability = option_find_float(options, "probability", .5); |
| | | dropout_layer layer = make_dropout_layer(params.batch, params.inputs, probability); |
| | | layer.out_w = params.w; |
| | | layer.out_h = params.h; |
| | | layer.out_c = params.c; |
| | | return layer; |
| | | } |
| | | |
| | | layer parse_normalization(list *options, size_params params) |
| | | { |
| | | float alpha = option_find_float(options, "alpha", .0001); |
| | | float beta = option_find_float(options, "beta" , .75); |
| | | float kappa = option_find_float(options, "kappa", 1); |
| | | int size = option_find_int(options, "size", 5); |
| | | layer l = make_normalization_layer(params.batch, params.w, params.h, params.c, size, alpha, beta, kappa); |
| | | return l; |
| | | } |
| | | |
| | | route_layer parse_route(list *options, size_params params, network net) |
| | | { |
| | | char *l = option_find(options, "layers"); |
| | | int len = strlen(l); |
| | | if(!l) error("Route Layer must specify input layers"); |
| | | int n = 1; |
| | | int i; |
| | | for(i = 0; i < len; ++i){ |
| | | if (l[i] == ',') ++n; |
| | | } |
| | | |
| | | int *layers = calloc(n, sizeof(int)); |
| | | int *sizes = calloc(n, sizeof(int)); |
| | | for(i = 0; i < n; ++i){ |
| | | int index = atoi(l); |
| | | l = strchr(l, ',')+1; |
| | | layers[i] = index; |
| | | sizes[i] = net.layers[index].outputs; |
| | | } |
| | | int batch = params.batch; |
| | | |
| | | route_layer layer = make_route_layer(batch, n, layers, sizes); |
| | | |
| | | convolutional_layer first = net.layers[layers[0]]; |
| | | layer.out_w = first.out_w; |
| | | layer.out_h = first.out_h; |
| | | layer.out_c = first.out_c; |
| | | for(i = 1; i < n; ++i){ |
| | | int index = layers[i]; |
| | | convolutional_layer next = net.layers[index]; |
| | | if(next.out_w == first.out_w && next.out_h == first.out_h){ |
| | | layer.out_c += next.out_c; |
| | | }else{ |
| | | layer.out_h = layer.out_w = layer.out_c = 0; |
| | | } |
| | | } |
| | | |
| | | return layer; |
| | | } |
| | | |
| | | learning_rate_policy get_policy(char *s) |
| | | { |
| | | if (strcmp(s, "poly")==0) return POLY; |
| | | if (strcmp(s, "constant")==0) return CONSTANT; |
| | | if (strcmp(s, "step")==0) return STEP; |
| | | if (strcmp(s, "exp")==0) return EXP; |
| | | fprintf(stderr, "Couldn't find policy %s, going with constant\n", s); |
| | | return CONSTANT; |
| | | } |
| | | |
| | | void parse_net_options(list *options, network *net) |
| | | { |
| | | net->batch = option_find_int(options, "batch",1); |
| | | net->learning_rate = option_find_float(options, "learning_rate", .001); |
| | | net->momentum = option_find_float(options, "momentum", .9); |
| | | net->decay = option_find_float(options, "decay", .0001); |
| | | int subdivs = option_find_int(options, "subdivisions",1); |
| | | net->batch /= subdivs; |
| | | net->subdivisions = subdivs; |
| | | |
| | | net->h = option_find_int_quiet(options, "height",0); |
| | | net->w = option_find_int_quiet(options, "width",0); |
| | | net->c = option_find_int_quiet(options, "channels",0); |
| | | net->inputs = option_find_int_quiet(options, "inputs", net->h * net->w * net->c); |
| | | |
| | | if(!net->inputs && !(net->h && net->w && net->c)) error("No input parameters supplied"); |
| | | |
| | | char *policy_s = option_find_str(options, "policy", "constant"); |
| | | net->policy = get_policy(policy_s); |
| | | if(net->policy == STEP){ |
| | | net->step = option_find_int(options, "step", 1); |
| | | net->gamma = option_find_float(options, "gamma", 1); |
| | | } else if (net->policy == EXP){ |
| | | net->gamma = option_find_float(options, "gamma", 1); |
| | | } else if (net->policy == POLY){ |
| | | net->power = option_find_float(options, "power", 1); |
| | | } |
| | | net->max_batches = option_find_int(options, "max_batches", 0); |
| | | } |
| | | |
| | | network parse_network_cfg(char *filename) |
| | | { |
| | | list *sections = read_cfg(filename); |
| | | network net = make_network(sections->size); |
| | | |
| | | node *n = sections->front; |
| | | if(!n) error("Config file has no sections"); |
| | | network net = make_network(sections->size - 1); |
| | | size_params params; |
| | | |
| | | section *s = (section *)n->val; |
| | | list *options = s->options; |
| | | if(!is_network(s)) error("First section must be [net] or [network]"); |
| | | parse_net_options(options, &net); |
| | | |
| | | params.h = net.h; |
| | | params.w = net.w; |
| | | params.c = net.c; |
| | | params.inputs = net.inputs; |
| | | params.batch = net.batch; |
| | | |
| | | n = n->next; |
| | | int count = 0; |
| | | free_section(s); |
| | | while(n){ |
| | | section *s = (section *)n->val; |
| | | list *options = s->options; |
| | | fprintf(stderr, "%d: ", count); |
| | | s = (section *)n->val; |
| | | options = s->options; |
| | | layer l = {0}; |
| | | if(is_convolutional(s)){ |
| | | int h,w,c; |
| | | int n = option_find_int(options, "filters",1); |
| | | int size = option_find_int(options, "size",1); |
| | | int stride = option_find_int(options, "stride",1); |
| | | char *activation_s = option_find_str(options, "activation", "sigmoid"); |
| | | ACTIVATION activation = get_activation(activation_s); |
| | | if(count == 0){ |
| | | h = option_find_int(options, "height",1); |
| | | w = option_find_int(options, "width",1); |
| | | c = option_find_int(options, "channels",1); |
| | | }else{ |
| | | image m = get_network_image_layer(net, count-1); |
| | | h = m.h; |
| | | w = m.w; |
| | | c = m.c; |
| | | if(h == 0) error("Layer before convolutional layer must output image."); |
| | | } |
| | | convolutional_layer *layer = make_convolutional_layer(h,w,c,n,size,stride, activation); |
| | | net.types[count] = CONVOLUTIONAL; |
| | | net.layers[count] = layer; |
| | | option_unused(options); |
| | | } |
| | | else if(is_connected(s)){ |
| | | int input; |
| | | int output = option_find_int(options, "output",1); |
| | | char *activation_s = option_find_str(options, "activation", "sigmoid"); |
| | | ACTIVATION activation = get_activation(activation_s); |
| | | if(count == 0){ |
| | | input = option_find_int(options, "input",1); |
| | | }else{ |
| | | input = get_network_output_size_layer(net, count-1); |
| | | } |
| | | connected_layer *layer = make_connected_layer(input, output, activation); |
| | | net.types[count] = CONNECTED; |
| | | net.layers[count] = layer; |
| | | option_unused(options); |
| | | l = parse_convolutional(options, params); |
| | | }else if(is_deconvolutional(s)){ |
| | | l = parse_deconvolutional(options, params); |
| | | }else if(is_connected(s)){ |
| | | l = parse_connected(options, params); |
| | | }else if(is_crop(s)){ |
| | | l = parse_crop(options, params); |
| | | }else if(is_cost(s)){ |
| | | l = parse_cost(options, params); |
| | | }else if(is_detection(s)){ |
| | | l = parse_detection(options, params); |
| | | }else if(is_region(s)){ |
| | | l = parse_region(options, params); |
| | | }else if(is_softmax(s)){ |
| | | int input; |
| | | if(count == 0){ |
| | | input = option_find_int(options, "input",1); |
| | | }else{ |
| | | input = get_network_output_size_layer(net, count-1); |
| | | } |
| | | softmax_layer *layer = make_softmax_layer(input); |
| | | net.types[count] = SOFTMAX; |
| | | net.layers[count] = layer; |
| | | option_unused(options); |
| | | l = parse_softmax(options, params); |
| | | }else if(is_normalization(s)){ |
| | | l = parse_normalization(options, params); |
| | | }else if(is_maxpool(s)){ |
| | | int h,w,c; |
| | | int stride = option_find_int(options, "stride",1); |
| | | //char *activation_s = option_find_str(options, "activation", "sigmoid"); |
| | | if(count == 0){ |
| | | h = option_find_int(options, "height",1); |
| | | w = option_find_int(options, "width",1); |
| | | c = option_find_int(options, "channels",1); |
| | | }else{ |
| | | image m = get_network_image_layer(net, count-1); |
| | | h = m.h; |
| | | w = m.w; |
| | | c = m.c; |
| | | if(h == 0) error("Layer before convolutional layer must output image."); |
| | | } |
| | | maxpool_layer *layer = make_maxpool_layer(h,w,c,stride); |
| | | net.types[count] = MAXPOOL; |
| | | net.layers[count] = layer; |
| | | option_unused(options); |
| | | l = parse_maxpool(options, params); |
| | | }else if(is_avgpool(s)){ |
| | | l = parse_avgpool(options, params); |
| | | }else if(is_route(s)){ |
| | | l = parse_route(options, params, net); |
| | | }else if(is_dropout(s)){ |
| | | l = parse_dropout(options, params); |
| | | l.output = net.layers[count-1].output; |
| | | l.delta = net.layers[count-1].delta; |
| | | #ifdef GPU |
| | | l.output_gpu = net.layers[count-1].output_gpu; |
| | | l.delta_gpu = net.layers[count-1].delta_gpu; |
| | | #endif |
| | | }else{ |
| | | fprintf(stderr, "Type not recognized: %s\n", s->type); |
| | | } |
| | | ++count; |
| | | l.dontload = option_find_int_quiet(options, "dontload", 0); |
| | | option_unused(options); |
| | | net.layers[count] = l; |
| | | free_section(s); |
| | | n = n->next; |
| | | if(n){ |
| | | params.h = l.out_h; |
| | | params.w = l.out_w; |
| | | params.c = l.out_c; |
| | | params.inputs = l.outputs; |
| | | } |
| | | ++count; |
| | | } |
| | | free_list(sections); |
| | | net.outputs = get_network_output_size(net); |
| | | net.output = get_network_output(net); |
| | | return net; |
| | | } |
| | | |
| | | int is_crop(section *s) |
| | | { |
| | | return (strcmp(s->type, "[crop]")==0); |
| | | } |
| | | int is_cost(section *s) |
| | | { |
| | | return (strcmp(s->type, "[cost]")==0); |
| | | } |
| | | int is_detection(section *s) |
| | | { |
| | | return (strcmp(s->type, "[detection]")==0); |
| | | } |
| | | int is_region(section *s) |
| | | { |
| | | return (strcmp(s->type, "[region]")==0); |
| | | } |
| | | int is_deconvolutional(section *s) |
| | | { |
| | | return (strcmp(s->type, "[deconv]")==0 |
| | | || strcmp(s->type, "[deconvolutional]")==0); |
| | | } |
| | | int is_convolutional(section *s) |
| | | { |
| | | return (strcmp(s->type, "[conv]")==0 |
| | | || strcmp(s->type, "[convolutional]")==0); |
| | | } |
| | | int is_network(section *s) |
| | | { |
| | | return (strcmp(s->type, "[net]")==0 |
| | | || strcmp(s->type, "[network]")==0); |
| | | } |
| | | int is_connected(section *s) |
| | | { |
| | | return (strcmp(s->type, "[conn]")==0 |
| | |
| | | return (strcmp(s->type, "[max]")==0 |
| | | || strcmp(s->type, "[maxpool]")==0); |
| | | } |
| | | int is_avgpool(section *s) |
| | | { |
| | | return (strcmp(s->type, "[avg]")==0 |
| | | || strcmp(s->type, "[avgpool]")==0); |
| | | } |
| | | int is_dropout(section *s) |
| | | { |
| | | return (strcmp(s->type, "[dropout]")==0); |
| | | } |
| | | |
| | | int is_normalization(section *s) |
| | | { |
| | | return (strcmp(s->type, "[lrn]")==0 |
| | | || strcmp(s->type, "[normalization]")==0); |
| | | } |
| | | |
| | | int is_softmax(section *s) |
| | | { |
| | | return (strcmp(s->type, "[soft]")==0 |
| | | || strcmp(s->type, "[softmax]")==0); |
| | | } |
| | | int is_route(section *s) |
| | | { |
| | | return (strcmp(s->type, "[route]")==0); |
| | | } |
| | | |
| | | int read_option(char *s, list *options) |
| | | { |
| | | int i; |
| | | int len = strlen(s); |
| | | size_t i; |
| | | size_t len = strlen(s); |
| | | char *val = 0; |
| | | for(i = 0; i < len; ++i){ |
| | | if(s[i] == '='){ |
| | |
| | | break; |
| | | default: |
| | | if(!read_option(line, current->options)){ |
| | | printf("Config file error line %d, could parse: %s\n", nu, line); |
| | | fprintf(stderr, "Config file error line %d, could parse: %s\n", nu, line); |
| | | free(line); |
| | | } |
| | | break; |
| | |
| | | return sections; |
| | | } |
| | | |
| | | void save_weights_double(network net, char *filename) |
| | | { |
| | | fprintf(stderr, "Saving doubled weights to %s\n", filename); |
| | | FILE *fp = fopen(filename, "w"); |
| | | if(!fp) file_error(filename); |
| | | |
| | | fwrite(&net.learning_rate, sizeof(float), 1, fp); |
| | | fwrite(&net.momentum, sizeof(float), 1, fp); |
| | | fwrite(&net.decay, sizeof(float), 1, fp); |
| | | fwrite(net.seen, sizeof(int), 1, fp); |
| | | |
| | | int i,j,k; |
| | | for(i = 0; i < net.n; ++i){ |
| | | layer l = net.layers[i]; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | pull_convolutional_layer(l); |
| | | } |
| | | #endif |
| | | float zero = 0; |
| | | fwrite(l.biases, sizeof(float), l.n, fp); |
| | | fwrite(l.biases, sizeof(float), l.n, fp); |
| | | |
| | | for (j = 0; j < l.n; ++j){ |
| | | int index = j*l.c*l.size*l.size; |
| | | fwrite(l.filters+index, sizeof(float), l.c*l.size*l.size, fp); |
| | | for (k = 0; k < l.c*l.size*l.size; ++k) fwrite(&zero, sizeof(float), 1, fp); |
| | | } |
| | | for (j = 0; j < l.n; ++j){ |
| | | int index = j*l.c*l.size*l.size; |
| | | for (k = 0; k < l.c*l.size*l.size; ++k) fwrite(&zero, sizeof(float), 1, fp); |
| | | fwrite(l.filters+index, sizeof(float), l.c*l.size*l.size, fp); |
| | | } |
| | | } |
| | | } |
| | | fclose(fp); |
| | | } |
| | | |
| | | void save_weights_upto(network net, char *filename, int cutoff) |
| | | { |
| | | fprintf(stderr, "Saving weights to %s\n", filename); |
| | | FILE *fp = fopen(filename, "w"); |
| | | if(!fp) file_error(filename); |
| | | |
| | | fwrite(&net.learning_rate, sizeof(float), 1, fp); |
| | | fwrite(&net.momentum, sizeof(float), 1, fp); |
| | | fwrite(&net.decay, sizeof(float), 1, fp); |
| | | fwrite(net.seen, sizeof(int), 1, fp); |
| | | |
| | | int i; |
| | | for(i = 0; i < net.n && i < cutoff; ++i){ |
| | | layer l = net.layers[i]; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | pull_convolutional_layer(l); |
| | | } |
| | | #endif |
| | | int num = l.n*l.c*l.size*l.size; |
| | | fwrite(l.biases, sizeof(float), l.n, fp); |
| | | fwrite(l.filters, sizeof(float), num, fp); |
| | | } |
| | | if(l.type == DECONVOLUTIONAL){ |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | pull_deconvolutional_layer(l); |
| | | } |
| | | #endif |
| | | int num = l.n*l.c*l.size*l.size; |
| | | fwrite(l.biases, sizeof(float), l.n, fp); |
| | | fwrite(l.filters, sizeof(float), num, fp); |
| | | } |
| | | if(l.type == CONNECTED){ |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | pull_connected_layer(l); |
| | | } |
| | | #endif |
| | | fwrite(l.biases, sizeof(float), l.outputs, fp); |
| | | fwrite(l.weights, sizeof(float), l.outputs*l.inputs, fp); |
| | | } |
| | | } |
| | | fclose(fp); |
| | | } |
| | | void save_weights(network net, char *filename) |
| | | { |
| | | save_weights_upto(net, filename, net.n); |
| | | } |
| | | |
| | | void load_weights_upto(network *net, char *filename, int cutoff) |
| | | { |
| | | fprintf(stderr, "Loading weights from %s...", filename); |
| | | fflush(stdout); |
| | | FILE *fp = fopen(filename, "r"); |
| | | if(!fp) file_error(filename); |
| | | |
| | | float garbage; |
| | | fread(&garbage, sizeof(float), 1, fp); |
| | | fread(&garbage, sizeof(float), 1, fp); |
| | | fread(&garbage, sizeof(float), 1, fp); |
| | | fread(net->seen, sizeof(int), 1, fp); |
| | | |
| | | int i; |
| | | for(i = 0; i < net->n && i < cutoff; ++i){ |
| | | layer l = net->layers[i]; |
| | | if (l.dontload) continue; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | int num = l.n*l.c*l.size*l.size; |
| | | fread(l.biases, sizeof(float), l.n, fp); |
| | | fread(l.filters, sizeof(float), num, fp); |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | push_convolutional_layer(l); |
| | | } |
| | | #endif |
| | | } |
| | | if(l.type == DECONVOLUTIONAL){ |
| | | int num = l.n*l.c*l.size*l.size; |
| | | fread(l.biases, sizeof(float), l.n, fp); |
| | | fread(l.filters, sizeof(float), num, fp); |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | push_deconvolutional_layer(l); |
| | | } |
| | | #endif |
| | | } |
| | | if(l.type == CONNECTED){ |
| | | fread(l.biases, sizeof(float), l.outputs, fp); |
| | | fread(l.weights, sizeof(float), l.outputs*l.inputs, fp); |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | push_connected_layer(l); |
| | | } |
| | | #endif |
| | | } |
| | | } |
| | | fprintf(stderr, "Done!\n"); |
| | | fclose(fp); |
| | | } |
| | | |
| | | void load_weights(network *net, char *filename) |
| | | { |
| | | load_weights_upto(net, filename, net->n); |
| | | } |
| | | |