Alexey
2017-01-02 b5938098d12d5c9fe48e7cc71ae3d75b7306833f
README.md
@@ -1,4 +1,6 @@
![Darknet Logo](http://pjreddie.com/media/files/darknet-black-small.png)
|  ![Darknet Logo](http://pjreddie.com/media/files/darknet-black-small.png) |   ![map_fps](https://cloud.githubusercontent.com/assets/4096485/21550284/88f81b8a-ce09-11e6-9516-8c3dd35dfaa7.jpg) https://arxiv.org/abs/1612.08242 |
|---|---|
# Yolo-Windows v2
# "You Only Look Once: Unified, Real-Time Object Detection (version 2)"
@@ -83,6 +85,13 @@
  3.1 (right click on project) -> properties  -> C/C++ -> General -> Additional Include Directories
  
  3.2 (right click on project) -> properties  -> Linker -> General -> Additional Library Directories
  3.3 Open file: `\src\yolo.c` and change 3 lines to your OpenCV-version - `249` (for 2.4.9), `2413` (for 2.4.13), ... :
    * `#pragma comment(lib, "opencv_core249.lib")`
    * `#pragma comment(lib, "opencv_imgproc249.lib")`
    * `#pragma comment(lib, "opencv_highgui249.lib")`
4. If you have other version of OpenCV 3.x (not 2.4.x) then you should change many places in code by yourself.
@@ -94,9 +103,9 @@
- (right click on project) -> properties  -> C/C++ -> General -> Additional Include Directories, put here: 
`C:\opencv_2.4.9\opencv\build\include;..\..\3rdparty\include;%(AdditionalIncludeDirectories);$(CudaToolkitIncludeDir);$(cudnn)\include`
- right click on project -> Build dependecies -> Build Customizations -> set check on CUDA 8.0 or what version you have - for example as here: http://devblogs.nvidia.com/parallelforall/wp-content/uploads/2015/01/VS2013-R-5.jpg
- (right click on project) -> Build dependecies -> Build Customizations -> set check on CUDA 8.0 or what version you have - for example as here: http://devblogs.nvidia.com/parallelforall/wp-content/uploads/2015/01/VS2013-R-5.jpg
- add to project all .c & .cu files from `\src`
-  (right click on project) -> properties  -> Linker -> General -> Additional Library Directories, put here:
- (right click on project) -> properties  -> Linker -> General -> Additional Library Directories, put here:
`C:\opencv_2.4.9\opencv\build\x64\vc12\lib;$(CUDA_PATH)lib\$(PlatformName);$(cudnn)\lib\x64;%(AdditionalLibraryDirectories)`
-  (right click on project) -> properties  -> Linker -> Input -> Additional dependecies, put here: 
@@ -104,6 +113,12 @@
`..\..\3rdparty\lib\x64\pthreadVC2.lib;cublas.lib;curand.lib;cudart.lib;cudnn.lib;%(AdditionalDependencies)`
- (right click on project) -> properties -> C/C++ -> Preprocessor -> Preprocessor Definitions
- open file: `\src\yolo.c` and change 3 lines to your OpenCV-version - `249` (for 2.4.9), `2413` (for 2.4.13), ... :
    * `#pragma comment(lib, "opencv_core249.lib")`
    * `#pragma comment(lib, "opencv_imgproc249.lib")`
    * `#pragma comment(lib, "opencv_highgui249.lib")`
`OPENCV;_TIMESPEC_DEFINED;_CRT_SECURE_NO_WARNINGS;GPU;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)`
- compile to .exe (X64 & Release) and put .dll-s near with .exe:
@@ -196,3 +211,9 @@
8. Start training by using the command line: `darknet.exe detector train data/obj.data yolo-obj.cfg darknet19_448.conv.23`
## How to mark bounded boxes of objects and create annotation files:
Here you can find repository with GUI-software for marking bounded boxes of objects and generating annotation files for Yolo v2: https://github.com/AlexeyAB/Yolo_mark
With example of: `train.txt`, `obj.names`, `obj.data`, `yolo-obj.cfg`, `air`1-6`.txt`, `bird`1-4`.txt` for 2 classes of objects (air, bird) and `train_obj.cmd` with example how to train this image-set with Yolo v2