| | |
| | | #pragma comment(lib, "opencv_highgui" OPENCV_VERSION ".lib") |
| | | #endif |
| | | |
| | | #endif |
| | | IplImage* draw_train_chart(float max_img_loss, int max_batches, int number_of_lines, int img_size); |
| | | void draw_train_loss(IplImage* img, int img_size, float avg_loss, float max_img_loss, int current_batch, int max_batches); |
| | | #endif // OPENCV |
| | | |
| | | static int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90}; |
| | | |
| | | void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear) |
| | | void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear, int dont_show) |
| | | { |
| | | list *options = read_data_cfg(datacfg); |
| | | char *train_images = option_find_str(options, "train", "data/train.list"); |
| | |
| | | |
| | | int init_w = net.w; |
| | | int init_h = net.h; |
| | | int iter_save; |
| | | iter_save = get_current_batch(net); |
| | | |
| | | load_args args = {0}; |
| | | args.w = net.w; |
| | |
| | | args.small_object = l.small_object; |
| | | args.d = &buffer; |
| | | args.type = DETECTION_DATA; |
| | | args.threads = 4;// 8; |
| | | args.threads = 64; // 8 |
| | | |
| | | args.angle = net.angle; |
| | | args.exposure = net.exposure; |
| | | args.saturation = net.saturation; |
| | | args.hue = net.hue; |
| | | |
| | | #ifdef OPENCV |
| | | IplImage* img = NULL; |
| | | float max_img_loss = 5; |
| | | int number_of_lines = 100; |
| | | int img_size = 1000; |
| | | if (!dont_show) |
| | | img = draw_train_chart(max_img_loss, net.max_batches, number_of_lines, img_size); |
| | | #endif //OPENCV |
| | | |
| | | pthread_t load_thread = load_data(args); |
| | | clock_t time; |
| | | int count = 0; |
| | |
| | | if(l.random && count++%10 == 0){ |
| | | printf("Resizing\n"); |
| | | int dim = (rand() % 12 + (init_w/32 - 5)) * 32; // +-160 |
| | | //int dim = (rand() % 10 + 10) * 32; |
| | | //if (get_current_batch(net)+100 > net.max_batches) dim = 544; |
| | | //int dim = (rand() % 4 + 16) * 32; |
| | | printf("%d\n", dim); |
| | |
| | | |
| | | i = get_current_batch(net); |
| | | printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs); |
| | | |
| | | #ifdef OPENCV |
| | | if(!dont_show) |
| | | draw_train_loss(img, img_size, avg_loss, max_img_loss, i, net.max_batches); |
| | | #endif // OPENCV |
| | | |
| | | //if (i % 1000 == 0 || (i < 1000 && i % 100 == 0)) { |
| | | if (i % 100 == 0) { |
| | | //if (i % 100 == 0) { |
| | | if(i >= (iter_save + 100)) { |
| | | iter_save = i; |
| | | #ifdef GPU |
| | | if (ngpus != 1) sync_nets(nets, ngpus, 0); |
| | | #endif |
| | |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_final.weights", backup_directory, base); |
| | | save_weights(net, buff); |
| | | |
| | | //cvReleaseImage(&img); |
| | | //cvDestroyAllWindows(); |
| | | } |
| | | |
| | | |
| | |
| | | float box_h = points->data.fl[i * 2 + 1]; |
| | | //int cluster_idx = labels->data.i[i]; |
| | | int cluster_idx = 0; |
| | | float min_dist = 1000000; |
| | | float min_dist = FLT_MAX; |
| | | for (j = 0; j < num_of_clusters; ++j) { |
| | | float anchor_w = centers->data.fl[j * 2]; |
| | | float anchor_h = centers->data.fl[j * 2 + 1]; |
| | |
| | | cvReleaseMat(&labels); |
| | | } |
| | | #else |
| | | void calc_anchors(char *datacfg, int num_of_clusters, int final_width, int final_height) { |
| | | void calc_anchors(char *datacfg, int num_of_clusters, int final_width, int final_height, int show) { |
| | | printf(" k-means++ can't be used without OpenCV, because there is used cvKMeans2 implementation \n"); |
| | | } |
| | | #endif // OPENCV |
| | | |
| | | void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, int dont_show) |
| | | void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, float hier_thresh, int dont_show) |
| | | { |
| | | list *options = read_data_cfg(datacfg); |
| | | char *name_list = option_find_str(options, "names", "data/names.list"); |
| | |
| | | char buff[256]; |
| | | char *input = buff; |
| | | int j; |
| | | float nms=.4; |
| | | float nms=.45; // 0.4F |
| | | while(1){ |
| | | if(filename){ |
| | | strncpy(input, filename, 256); |
| | |
| | | strtok(input, "\n"); |
| | | } |
| | | image im = load_image_color(input,0,0); |
| | | int letter = 0; |
| | | image sized = resize_image(im, net.w, net.h); |
| | | //image sized = letterbox_image(im, net.w, net.h); letter = 1; |
| | | layer l = net.layers[net.n-1]; |
| | | |
| | | box *boxes = calloc(l.w*l.h*l.n, sizeof(box)); |
| | | float **probs = calloc(l.w*l.h*l.n, sizeof(float *)); |
| | | for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *)); |
| | | //box *boxes = calloc(l.w*l.h*l.n, sizeof(box)); |
| | | //float **probs = calloc(l.w*l.h*l.n, sizeof(float *)); |
| | | //for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *)); |
| | | |
| | | float *X = sized.data; |
| | | time=clock(); |
| | | network_predict(net, X); |
| | | printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); |
| | | get_region_boxes(l, 1, 1, thresh, probs, boxes, 0, 0); |
| | | if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, l.classes, nms); |
| | | draw_detections(im, l.w*l.h*l.n, thresh, boxes, probs, names, alphabet, l.classes); |
| | | //get_region_boxes(l, 1, 1, thresh, probs, boxes, 0, 0); |
| | | // if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, l.classes, nms); |
| | | //draw_detections(im, l.w*l.h*l.n, thresh, boxes, probs, names, alphabet, l.classes); |
| | | int nboxes = 0; |
| | | detection *dets = get_network_boxes(&net, im.w, im.h, thresh, hier_thresh, 0, 1, &nboxes, letter); |
| | | if (nms) do_nms_sort_v3(dets, nboxes, l.classes, nms); |
| | | draw_detections_v3(im, dets, nboxes, thresh, names, alphabet, l.classes); |
| | | free_detections(dets, nboxes); |
| | | save_image(im, "predictions"); |
| | | if (!dont_show) { |
| | | show_image(im, "predictions"); |
| | |
| | | |
| | | free_image(im); |
| | | free_image(sized); |
| | | free(boxes); |
| | | free_ptrs((void **)probs, l.w*l.h*l.n); |
| | | //free(boxes); |
| | | //free_ptrs((void **)probs, l.w*l.h*l.n); |
| | | #ifdef OPENCV |
| | | if (!dont_show) { |
| | | cvWaitKey(0); |
| | |
| | | int http_stream_port = find_int_arg(argc, argv, "-http_port", -1); |
| | | char *out_filename = find_char_arg(argc, argv, "-out_filename", 0); |
| | | char *prefix = find_char_arg(argc, argv, "-prefix", 0); |
| | | float thresh = find_float_arg(argc, argv, "-thresh", .24); |
| | | float thresh = find_float_arg(argc, argv, "-thresh", .25); // 0.24 |
| | | float hier_thresh = find_float_arg(argc, argv, "-hier", .5); |
| | | int cam_index = find_int_arg(argc, argv, "-c", 0); |
| | | int frame_skip = find_int_arg(argc, argv, "-s", 0); |
| | | int num_of_clusters = find_int_arg(argc, argv, "-num_of_clusters", 5); |
| | |
| | | if(weights) |
| | | if (weights[strlen(weights) - 1] == 0x0d) weights[strlen(weights) - 1] = 0; |
| | | char *filename = (argc > 6) ? argv[6]: 0; |
| | | if(0==strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh, dont_show); |
| | | else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear); |
| | | if(0==strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh, hier_thresh, dont_show); |
| | | else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear, dont_show); |
| | | else if(0==strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights); |
| | | else if(0==strcmp(argv[2], "recall")) validate_detector_recall(datacfg, cfg, weights); |
| | | else if(0==strcmp(argv[2], "map")) validate_detector_map(datacfg, cfg, weights, thresh); |
| | | else if(0==strcmp(argv[2], "calc_anchors")) calc_anchors(datacfg, num_of_clusters, final_width, final_heigh, show); |
| | | else if(0==strcmp(argv[2], "calc_anchors")) calc_anchors(datacfg, num_of_clusters, final_width, final_heigh, show); |
| | | else if(0==strcmp(argv[2], "demo")) { |
| | | list *options = read_data_cfg(datacfg); |
| | | int classes = option_find_int(options, "classes", 20); |
| | |
| | | char **names = get_labels(name_list); |
| | | if(filename) |
| | | if (filename[strlen(filename) - 1] == 0x0d) filename[strlen(filename) - 1] = 0; |
| | | demo(cfg, weights, thresh, cam_index, filename, names, classes, frame_skip, prefix, out_filename, |
| | | demo(cfg, weights, thresh, hier_thresh, cam_index, filename, names, classes, frame_skip, prefix, out_filename, |
| | | http_stream_port, dont_show); |
| | | } |
| | | } |