| | |
| | | #include "parser.h" |
| | | #include "utils.h" |
| | | #include "cuda.h" |
| | | #include "blas.h" |
| | | |
| | | #ifdef OPENCV |
| | | #include "opencv2/highgui/highgui_c.h" |
| | | #endif |
| | | |
| | | extern void run_imagenet(int argc, char **argv); |
| | | extern void run_detection(int argc, char **argv); |
| | | extern void run_yolo(int argc, char **argv); |
| | | extern void run_coco(int argc, char **argv); |
| | | extern void run_writing(int argc, char **argv); |
| | | extern void run_captcha(int argc, char **argv); |
| | | extern void run_nightmare(int argc, char **argv); |
| | | extern void run_dice(int argc, char **argv); |
| | | extern void run_compare(int argc, char **argv); |
| | | extern void run_classifier(int argc, char **argv); |
| | | extern void run_char_rnn(int argc, char **argv); |
| | | |
| | | void change_rate(char *filename, float scale, float add) |
| | | { |
| | |
| | | fclose(fp); |
| | | } |
| | | |
| | | void average(int argc, char *argv[]) |
| | | { |
| | | char *cfgfile = argv[2]; |
| | | char *outfile = argv[3]; |
| | | gpu_index = -1; |
| | | network net = parse_network_cfg(cfgfile); |
| | | network sum = parse_network_cfg(cfgfile); |
| | | |
| | | char *weightfile = argv[4]; |
| | | load_weights(&sum, weightfile); |
| | | |
| | | int i, j; |
| | | int n = argc - 5; |
| | | for(i = 0; i < n; ++i){ |
| | | weightfile = argv[i+5]; |
| | | load_weights(&net, weightfile); |
| | | for(j = 0; j < net.n; ++j){ |
| | | layer l = net.layers[j]; |
| | | layer out = sum.layers[j]; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | int num = l.n*l.c*l.size*l.size; |
| | | axpy_cpu(l.n, 1, l.biases, 1, out.biases, 1); |
| | | axpy_cpu(num, 1, l.filters, 1, out.filters, 1); |
| | | } |
| | | if(l.type == CONNECTED){ |
| | | axpy_cpu(l.outputs, 1, l.biases, 1, out.biases, 1); |
| | | axpy_cpu(l.outputs*l.inputs, 1, l.weights, 1, out.weights, 1); |
| | | } |
| | | } |
| | | } |
| | | n = n+1; |
| | | for(j = 0; j < net.n; ++j){ |
| | | layer l = sum.layers[j]; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | int num = l.n*l.c*l.size*l.size; |
| | | scal_cpu(l.n, 1./n, l.biases, 1); |
| | | scal_cpu(num, 1./n, l.filters, 1); |
| | | } |
| | | if(l.type == CONNECTED){ |
| | | scal_cpu(l.outputs, 1./n, l.biases, 1); |
| | | scal_cpu(l.outputs*l.inputs, 1./n, l.weights, 1); |
| | | } |
| | | } |
| | | save_weights(sum, outfile); |
| | | } |
| | | |
| | | void partial(char *cfgfile, char *weightfile, char *outfile, int max) |
| | | { |
| | | gpu_index = -1; |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights_upto(&net, weightfile, max); |
| | | } |
| | | net.seen = 0; |
| | | *net.seen = 0; |
| | | save_weights_upto(net, outfile, max); |
| | | } |
| | | |
| | | void stacked(char *cfgfile, char *weightfile, char *outfile) |
| | | { |
| | | gpu_index = -1; |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | net.seen = 0; |
| | | save_weights_double(net, outfile); |
| | | } |
| | | |
| | | #include "convolutional_layer.h" |
| | | void rescale_net(char *cfgfile, char *weightfile, char *outfile) |
| | | { |
| | |
| | | save_weights(net, outfile); |
| | | } |
| | | |
| | | void normalize_net(char *cfgfile, char *weightfile, char *outfile) |
| | | { |
| | | gpu_index = -1; |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | int i, j; |
| | | for(i = 0; i < net.n; ++i){ |
| | | layer l = net.layers[i]; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | net.layers[i].batch_normalize=1; |
| | | net.layers[i].scales = calloc(l.n, sizeof(float)); |
| | | for(j = 0; j < l.n; ++j){ |
| | | net.layers[i].scales[i] = 1; |
| | | } |
| | | net.layers[i].rolling_mean = calloc(l.n, sizeof(float)); |
| | | net.layers[i].rolling_variance = calloc(l.n, sizeof(float)); |
| | | } |
| | | } |
| | | save_weights(net, outfile); |
| | | } |
| | | |
| | | void denormalize_net(char *cfgfile, char *weightfile, char *outfile) |
| | | { |
| | | gpu_index = -1; |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | int i; |
| | | for(i = 0; i < net.n; ++i){ |
| | | layer l = net.layers[i]; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | denormalize_convolutional_layer(l); |
| | | net.layers[i].batch_normalize=0; |
| | | } |
| | | } |
| | | save_weights(net, outfile); |
| | | } |
| | | |
| | | void visualize(char *cfgfile, char *weightfile) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | |
| | | load_weights(&net, weightfile); |
| | | } |
| | | visualize_network(net); |
| | | #ifdef OPENCV |
| | | #ifdef OPENCV |
| | | cvWaitKey(0); |
| | | #endif |
| | | #endif |
| | | } |
| | | |
| | | int main(int argc, char **argv) |
| | |
| | | return 0; |
| | | } |
| | | gpu_index = find_int_arg(argc, argv, "-i", 0); |
| | | if(find_arg(argc, argv, "-nogpu")) gpu_index = -1; |
| | | if(find_arg(argc, argv, "-nogpu")) { |
| | | gpu_index = -1; |
| | | printf("nogpu\n"); |
| | | } |
| | | |
| | | #ifndef GPU |
| | | gpu_index = -1; |
| | | #else |
| | | if(gpu_index >= 0){ |
| | | cudaSetDevice(gpu_index); |
| | | cudaError_t status = cudaSetDevice(gpu_index); |
| | | check_error(status); |
| | | } |
| | | #endif |
| | | |
| | | if(0==strcmp(argv[1], "imagenet")){ |
| | | run_imagenet(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "detection")){ |
| | | run_detection(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "average")){ |
| | | average(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "yolo")){ |
| | | run_yolo(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "rnn")){ |
| | | run_char_rnn(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "coco")){ |
| | | run_coco(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "classifier")){ |
| | | run_classifier(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "compare")){ |
| | | run_compare(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "dice")){ |
| | | run_dice(argc, argv); |
| | | } else if (0 == strcmp(argv[1], "writing")){ |
| | |
| | | change_rate(argv[2], atof(argv[3]), (argc > 4) ? atof(argv[4]) : 0); |
| | | } else if (0 == strcmp(argv[1], "rgbgr")){ |
| | | rgbgr_net(argv[2], argv[3], argv[4]); |
| | | } else if (0 == strcmp(argv[1], "denormalize")){ |
| | | denormalize_net(argv[2], argv[3], argv[4]); |
| | | } else if (0 == strcmp(argv[1], "normalize")){ |
| | | normalize_net(argv[2], argv[3], argv[4]); |
| | | } else if (0 == strcmp(argv[1], "rescale")){ |
| | | rescale_net(argv[2], argv[3], argv[4]); |
| | | } else if (0 == strcmp(argv[1], "partial")){ |
| | | partial(argv[2], argv[3], argv[4], atoi(argv[5])); |
| | | } else if (0 == strcmp(argv[1], "stacked")){ |
| | | stacked(argv[2], argv[3], argv[4]); |
| | | } else if (0 == strcmp(argv[1], "visualize")){ |
| | | visualize(argv[2], (argc > 3) ? argv[3] : 0); |
| | | } else if (0 == strcmp(argv[1], "imtest")){ |