| | |
| | | layer->w = w; |
| | | layer->c = c; |
| | | layer->n = n; |
| | | layer->edge = 0; |
| | | layer->edge = 1; |
| | | layer->stride = stride; |
| | | layer->kernels = calloc(n, sizeof(image)); |
| | | layer->kernel_updates = calloc(n, sizeof(image)); |
| | |
| | | layer->biases = calloc(n, sizeof(double)); |
| | | layer->bias_updates = calloc(n, sizeof(double)); |
| | | layer->bias_momentum = calloc(n, sizeof(double)); |
| | | double scale = 20./(size*size*c); |
| | | double scale = 2./(size*size); |
| | | for(i = 0; i < n; ++i){ |
| | | //layer->biases[i] = rand_normal()*scale + scale; |
| | | layer->biases[i] = 1; |
| | | layer->biases[i] = 0; |
| | | layer->kernels[i] = make_random_kernel(size, c, scale); |
| | | layer->kernel_updates[i] = make_random_kernel(size, c, 0); |
| | | layer->kernel_momentum[i] = make_random_kernel(size, c, 0); |
| | |
| | | out_h = (layer->h - layer->size)/layer->stride+1; |
| | | out_w = (layer->h - layer->size)/layer->stride+1; |
| | | } |
| | | printf("Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n); |
| | | fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n); |
| | | layer->output = calloc(out_h * out_w * n, sizeof(double)); |
| | | layer->delta = calloc(out_h * out_w * n, sizeof(double)); |
| | | layer->upsampled = make_image(h,w,n); |
| | |
| | | } |
| | | } |
| | | |
| | | void learn_convolutional_layer(convolutional_layer layer, double *input) |
| | | void gradient_delta_convolutional_layer(convolutional_layer layer) |
| | | { |
| | | int i; |
| | | image in_image = double_to_image(layer.h, layer.w, layer.c, input); |
| | | image out_delta = get_convolutional_delta(layer); |
| | | image out_image = get_convolutional_image(layer); |
| | | for(i = 0; i < out_image.h*out_image.w*out_image.c; ++i){ |
| | | out_delta.data[i] *= gradient(out_image.data[i], layer.activation); |
| | | } |
| | | } |
| | | |
| | | void learn_convolutional_layer(convolutional_layer layer, double *input) |
| | | { |
| | | int i; |
| | | image in_image = double_to_image(layer.h, layer.w, layer.c, input); |
| | | image out_delta = get_convolutional_delta(layer); |
| | | gradient_delta_convolutional_layer(layer); |
| | | for(i = 0; i < layer.n; ++i){ |
| | | kernel_update(in_image, layer.kernel_updates[i], layer.stride, i, out_delta, layer.edge); |
| | | layer.bias_updates[i] += avg_image_layer(out_delta, i); |